IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v17y2011i1p77-98n2.html
   My bibliography  Save this article

A framework for adaptive Monte Carlo procedures

Author

Listed:
  • Lapeyre Bernard

    (Université Paris-Est, CERMICS, Projet MathFi ENPC-INRIA-UMLV, 6 et 8 avenue Blaise Pascal, 77455 Marne La Vallée, Cedex 2, France.)

  • Lelong Jérôme

    (Laboratoire Jean Kuntzmann, Université de Grenoble et CNRS, 51, rue des mathématiques BP 53, 38041 Grenoble Cédex 9, France.)

Abstract

Adaptive Monte Carlo methods are recent variance reduction techniques. In this work, we propose a mathematical setting which greatly relaxes the assumptions needed by for the adaptive importance sampling techniques presented in [Arouna, Monte Carlo Methods Appl. 10: 1–24, 2004, Arouna, The Journal of Computational Finance 7: Winter 2003/2004, Su and Fu, Journal of Computational Finance 5: 27–50, 2002, Vázquez-Abad and Dufresne, Accelerated simulation for pricing asian options: 1493–1500, IEEE Computer Society Press, 1998]. We establish the convergence and asymptotic normality of the adaptive Monte Carlo estimator under local assumptions which are easily verifiable in practice. We present one way of approximating the optimal importance sampling parameter using a randomly truncated stochastic algorithm. Finally, we apply this technique to some examples of valuation of financial derivatives.

Suggested Citation

  • Lapeyre Bernard & Lelong Jérôme, 2011. "A framework for adaptive Monte Carlo procedures," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 77-98, January.
  • Handle: RePEc:bpj:mcmeap:v:17:y:2011:i:1:p:77-98:n:2
    DOI: 10.1515/mcma.2011.002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma.2011.002
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma.2011.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    2. Lelong, Jérôme, 2008. "Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2632-2636, November.
    3. Sujin Kim & Shane G. Henderson, 2007. "Adaptive Control Variates for Finite-Horizon Simulation," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 508-527, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    2. Bernard Lapeyre & J'er^ome Lelong, 2010. "A framework for adaptive Monte-Carlo procedures," Papers 1001.3551, arXiv.org, revised Jul 2010.
    3. Han, Chulwoo & Park, Frank C., 2022. "A geometric framework for covariance dynamics," Journal of Banking & Finance, Elsevier, vol. 134(C).
    4. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    5. Xueping Wu & Jin Zhang, 1999. "Options on the minimum or the maximum of two average prices," Review of Derivatives Research, Springer, vol. 3(2), pages 183-204, May.
    6. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2000. "Variance Reduction Techniques for Estimating Value-at-Risk," Management Science, INFORMS, vol. 46(10), pages 1349-1364, October.
    7. Shih-Kuei Lin & Ren-Her Wang & Cheng-Der Fuh, 2006. "Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(3), pages 261-295, September.
    8. Aleksandar Arandjelović & Thorsten Rheinländer & Pavel V. Shevchenko, 2025. "Importance sampling for option pricing with feedforward neural networks," Finance and Stochastics, Springer, vol. 29(1), pages 97-141, January.
    9. Genin, Adrien & Tankov, Peter, 2020. "Optimal importance sampling for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 130(1), pages 20-46.
    10. Ma, Xiaocui & Xi, Fubao, 2017. "Moderate deviations for neutral stochastic differential delay equations with jumps," Statistics & Probability Letters, Elsevier, vol. 126(C), pages 97-107.
    11. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    12. Pierre Etore & Gersende Fort & Benjamin Jourdain & Eric Moulines, 2011. "On adaptive stratification," Annals of Operations Research, Springer, vol. 189(1), pages 127-154, September.
    13. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    14. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    15. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    16. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621, arXiv.org.
    17. Guangxin Jiang & L. Jeff Hong & Haihui Shen, 2024. "Real-Time Derivative Pricing and Hedging with Consistent Metamodels," INFORMS Journal on Computing, INFORMS, vol. 36(5), pages 1168-1189, September.
    18. Sak, Halis & Başoğlu, İsmail, 2017. "Efficient randomized quasi-Monte Carlo methods for portfolio market risk," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 87-94.
    19. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 611-641, June.
    20. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:17:y:2011:i:1:p:77-98:n:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.