IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1307.2218.html
   My bibliography  Save this paper

Importance sampling for jump processes and applications to finance

Author

Listed:
  • Laetitia Badouraly Kassim

    (LJK)

  • J'er^ome Lelong

    (LJK)

  • Imane Loumrhari

    (LJK)

Abstract

Adaptive importance sampling techniques are widely known for the Gaussian setting of Brownian driven diffusions. In this work, we want to extend them to jump processes. Our approach relies on a change of the jump intensity combined with the standard exponential tilting for the Brownian motion. The free parameters of our framework are optimized using sample average approximation techniques. We illustrate the efficiency of our method on the valuation of financial derivatives in several jump models.

Suggested Citation

  • Laetitia Badouraly Kassim & J'er^ome Lelong & Imane Loumrhari, 2013. "Importance sampling for jump processes and applications to finance," Papers 1307.2218, arXiv.org.
  • Handle: RePEc:arx:papers:1307.2218
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1307.2218
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arouna Bouhari, 2004. "Adaptative Monte Carlo Method, A Variance Reduction Technique," Monte Carlo Methods and Applications, De Gruyter, vol. 10(1), pages 1-24, March.
    2. Lelong, Jérôme, 2008. "Almost sure convergence of randomly truncated stochastic algorithms under verifiable conditions," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2632-2636, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:wpaper:hal-00842362 is not listed on IDEAS
    2. Laetitia Badouraly Kassim & Jérôme Lelong & Imane Loumrhari, 2015. "Importance sampling for jump processes and applications to finance," Post-Print hal-00842362, HAL.
    3. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    4. Lapeyre Bernard & Lelong Jérôme, 2011. "A framework for adaptive Monte Carlo procedures," Monte Carlo Methods and Applications, De Gruyter, vol. 17(1), pages 77-98, January.
    5. Bernard Lapeyre & J'er^ome Lelong, 2010. "A framework for adaptive Monte-Carlo procedures," Papers 1001.3551, arXiv.org, revised Jul 2010.
    6. Cénac P. & Maume-Deschamps V. & Prieur C., 2012. "Some multivariate risk indicators: Minimization by using a Kiefer–Wolfowitz approach to the mirror stochastic algorithm," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 47-72, March.
    7. Teo Sharia, 2014. "Truncated stochastic approximation with moving bounds: convergence," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 163-179, July.
    8. Christophe Michel & Victor Reutenauer & Denis Talay & Etienne Tanré, 2016. "Liquidity costs: a new numerical methodology and an empirical study," Post-Print hal-01098096, HAL.
    9. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Post-Print hal-01214840, HAL.
    10. Ahmed Kebaier & Jérôme Lelong, 2018. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 611-641, June.
    11. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    12. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    13. Olivier Aj Bardou & Noufel Frikha & G. Pag`es, 2008. "Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling," Papers 0812.3381, arXiv.org, revised Dec 2010.
    14. Christophe Michel & Victor Reutenauer & Denis Talay & Etienne Tanr'e, 2015. "Liquidity costs: a new numerical methodology and an empirical study," Papers 1501.07404, arXiv.org, revised Dec 2015.
    15. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.
    16. Ahmed Kebaier & Jérôme Lelong, 2017. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Working Papers hal-01214840, HAL.
    17. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Monte Carlo and its Applications in Financial Engineering," Papers 2209.14549, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1307.2218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.