IDEAS home Printed from https://ideas.repec.org/a/bpj/jossai/v4y2016i3p195-211n1.html
   My bibliography  Save this article

Capability Oriented Combat System of Systems Networked Modeling and Analyzing

Author

Listed:
  • Zhao Qingsong
  • Zhang Xiaoke
  • Yang Zhiwei

    (School of Information System and Management, National University of Defense Technology, Changsha410073China)

Abstract

Combat modeling is an important area of military operations. System of system counterwork is an important mode of information-based war which is a mode of “network centered” instead of “platform centered” and “capability oriented” instead of “function oriented”. Under the conditions of informationization, the combat model must therefore address these challenges by properly representing the networked efficient based on mutual relations among combat entities. The implementation process of combat system of systems capability is analyzed which is the result of complex interactions between the entities in four domains through a sequence of action processes. The combat network model of combat system of systems is described which reflects the fundamental structure of combat system of systems. The entity with three types of functions and five types of relations in the combat network is analyzed. The capability loop is defined and the evaluation index of combat network of combat system of systems is proposed based on the capability loop analysis. Finally, an example is used to illustrate the methodology.

Suggested Citation

  • Zhao Qingsong & Zhang Xiaoke & Yang Zhiwei, 2016. "Capability Oriented Combat System of Systems Networked Modeling and Analyzing," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 195-211, June.
  • Handle: RePEc:bpj:jossai:v:4:y:2016:i:3:p:195-211:n:1
    DOI: 10.21078/JSSI-2016-195-17
    as

    Download full text from publisher

    File URL: https://doi.org/10.21078/JSSI-2016-195-17
    Download Restriction: no

    File URL: https://libkey.io/10.21078/JSSI-2016-195-17?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jerome Bracken, 1995. "Lanchester models of the ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(4), pages 559-577, June.
    2. Protopopescu, V. & Santoro, R. T. & Dockery, J., 1989. "Combat modeling with partial differential equations," European Journal of Operational Research, Elsevier, vol. 38(2), pages 178-183, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrick S. Chen & Peter Chu, 2001. "Applying Lanchester's linear law to model the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(8), pages 653-661, December.
    2. C-Y Hung & G K Yang & P S Deng & T Tang & S-P Lan & P Chu, 2005. "Fitting Lanchester's square law to the Ardennes Campaign," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(8), pages 942-946, August.
    3. Gerardo Minguela-Castro & Ruben Heradio & Carlos Cerrada, 2021. "Automated Support for Battle Operational–Strategic Decision-Making," Mathematics, MDPI, vol. 9(13), pages 1-15, June.
    4. Pettit, L. I. & Wiper, M. P. & Young, K. D. S., 2003. "Bayesian inference for some Lanchester combat laws," European Journal of Operational Research, Elsevier, vol. 148(1), pages 152-165, July.
    5. González, Eduardo & Villena, Marcelo, 2011. "Spatial Lanchester models," European Journal of Operational Research, Elsevier, vol. 210(3), pages 706-715, May.
    6. Chad W. Seagren & Donald P. Gaver & Patricia A. Jacobs, 2019. "A stochastic air combat logistics decision model for Blue versus Red opposition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 663-674, December.
    7. Chen, Hsi-Mei, 2007. "A non-linear inverse Lanchester square law problem in estimating the force-dependent attrition coefficients," European Journal of Operational Research, Elsevier, vol. 182(2), pages 911-922, October.
    8. N E Ozdemirel & L Kandiller, 2006. "Semi-dynamic modelling of heterogeneous land combat," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 38-51, January.
    9. Ronald D. Fricker, 1998. "Attrition models of the Ardennes campaign," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(1), pages 1-22, February.
    10. P.S. Sheeba & Debasish Ghose, 2008. "Optimal resource allocation and redistribution strategy in military conflicts with Lanchester square law attrition," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(6), pages 581-591, September.
    11. Anelí Bongers & José L. Torres, 2021. "A bottleneck combat model: an application to the Battle of Thermopylae," Operational Research, Springer, vol. 21(4), pages 2859-2877, December.
    12. Kjell Hausken & John F. Moxnes, 2005. "Approximations and empirics for stochastic war equations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(7), pages 682-700, October.
    13. John Richard Scales, 1995. "A modified lanchester linear process calibrated to historical data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 491-501, April.
    14. Kress, Moshe & Caulkins, Jonathan P. & Feichtinger, Gustav & Grass, Dieter & Seidl, Andrea, 2018. "Lanchester model for three-way combat," European Journal of Operational Research, Elsevier, vol. 264(1), pages 46-54.
    15. Miltiadis Chalikias & Michalis Skordoulis, 2017. "Implementation of F.W. Lanchester’s combat model in a supply chain in duopoly: the case of Coca-Cola and Pepsi in Greece," Operational Research, Springer, vol. 17(3), pages 737-745, October.
    16. Ian R. Johnson & Niall J. MacKay, 2011. "Lanchester models and the battle of Britain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 210-222, April.
    17. N. K. Jaiswal & B. S. Nagabhushana, 1995. "Termination decision rules in combat attrition models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(3), pages 419-433, April.
    18. McCartney, Mark, 2022. "The solution of Lanchester’s equations with inter-battle reinforcement strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Donghyun Kim & Hyungil Moon & Donghyun Park & Hayong Shin, 2017. "An efficient approximate solution for stochastic Lanchester models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1470-1481, November.
    20. M.P. Wiper & L.I. Pettit & K.D.S. Young, 2000. "Bayesian inference for a Lanchester type combat model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 541-558, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jossai:v:4:y:2016:i:3:p:195-211:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.