IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v9y2013i2p149-160n8.html
   My bibliography  Save this article

Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems

Author

Listed:
  • Díaz Iván

    (Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA)

  • van der Laan Mark J.

    (University of California – Berkeley, Berkeley, CA 94709, USA)

Abstract

In this article, we present a sensitivity analysis for drawing inferences about parameters that are not estimable from observed data without additional assumptions. We present the methodology using two different examples: a causal parameter that is not identifiable due to violations of the randomization assumption, and a parameter that is not estimable in the nonparametric model due to measurement error. Existing methods for tackling these problems assume a parametric model for the type of violation to the identifiability assumption and require the development of new estimators and inference for every new model. The method we present can be used in conjunction with any existing asymptotically linear estimator of an observed data parameter that approximates the unidentifiable full data parameter and does not require the study of additional models.

Suggested Citation

  • Díaz Iván & van der Laan Mark J., 2013. "Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 149-160, November.
  • Handle: RePEc:bpj:ijbist:v:9:y:2013:i:2:p:149-160:n:8
    DOI: 10.1515/ijb-2013-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ijb-2013-0004
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/ijb-2013-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel O. Scharfstein, 2002. "Estimation of the failure time distribution in the presence of informative censoring," Biometrika, Biometrika Trust, vol. 89(3), pages 617-634, August.
    2. James Robins & Andrea Rotnitzky & Stijn Vansteelandt, 2007. "Discussions," Biometrics, The International Biometric Society, vol. 63(3), pages 650-653, September.
    3. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    4. Rotnitzky Andrea & Daniel Scharfstein & Ting‐Li Su & James Robins, 2001. "Methods for Conducting Sensitivity Analysis of Trials with Potentially Nonignorable Competing Causes of Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 103-113, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashesh Rambachan & Amanda Coston & Edward Kennedy, 2022. "Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding," Papers 2212.09844, arXiv.org, revised Aug 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    2. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    3. David Todem & KyungMann Kim & Jason Fine & Limin Peng, 2010. "Semiparametric regression models and sensitivity analysis of longitudinal data with non‐random dropouts," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 133-156, May.
    4. Shu Yang & Yilong Zhang & Guanghan Frank Liu & Qian Guan, 2023. "SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale," Biometrics, The International Biometric Society, vol. 79(1), pages 230-240, March.
    5. van der Laan Mark J., 2014. "Causal Inference for a Population of Causally Connected Units," Journal of Causal Inference, De Gruyter, vol. 2(1), pages 1-62, March.
    6. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    7. Greg DiRienzo, 2004. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Harvard University Biostatistics Working Paper Series 1000, Berkeley Electronic Press.
    8. A. G. DiRienzo, 2003. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(3), pages 497-504, September.
    9. Matthew A. Masten & Alexandre Poirier, 2020. "Inference on breakdown frontiers," Quantitative Economics, Econometric Society, vol. 11(1), pages 41-111, January.
    10. Rose Sherri & van der Laan Mark J., 2011. "A Targeted Maximum Likelihood Estimator for Two-Stage Designs," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-21, March.
    11. Fotios Siannis, 2004. "Applications of a Parametric Model for Informative Censoring," Biometrics, The International Biometric Society, vol. 60(3), pages 704-714, September.
    12. VanderWeele Tyler J, 2011. "Principal Stratification -- Uses and Limitations," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-14, July.
    13. Cheng, Cheng, 2016. "Exploratory failure time analysis in large scale genomics," Computational Statistics & Data Analysis, Elsevier, vol. 95(C), pages 192-206.
    14. Karine Lamiraud & Pierre‐Yves Geoffard, 2007. "Therapeutic non‐adherence: a rational behavior revealing patient preferences?," Health Economics, John Wiley & Sons, Ltd., vol. 16(11), pages 1185-1204, November.
    15. Xie, Hui, 2012. "Analyzing longitudinal clinical trial data with nonignorable missingness and unknown missingness reasons," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1287-1300.
    16. Baojiang Chen & Xiao-Hua Zhou, 2011. "Doubly Robust Estimates for Binary Longitudinal Data Analysis with Missing Response and Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 830-842, September.
    17. Ivy Jansen & Geert Molenberghs, 2008. "A flexible marginal modelling strategy for non‐monotone missing data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 347-373, April.
    18. D. Nitsch & B. L. DeStavola & S. M. B. Morton & D. A. Leon, 2006. "Linkage bias in estimating the association between childhood exposures and propensity to become a mother: an example of simple sensitivity analyses," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(3), pages 493-505, July.
    19. Gertheiss, Jan & Goldsmith, Jeff & Staicu, Ana-Maria, 2017. "A note on modeling sparse exponential-family functional response curves," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 46-52.
    20. Jan R. Magnus & Andrey L. Vasnev, 2007. "Local sensitivity and diagnostic tests," Econometrics Journal, Royal Economic Society, vol. 10(1), pages 166-192, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:9:y:2013:i:2:p:149-160:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.