IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p230-240.html
   My bibliography  Save this article

SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale

Author

Listed:
  • Shu Yang
  • Yilong Zhang
  • Guanghan Frank Liu
  • Qian Guan

Abstract

Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the δ‐adjusted and control‐based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets a broad class of treatment effect estimands defined as functionals of treatment‐specific survival functions, taking into account missing data due to censoring. Multiple imputation facilitates the use of simple full‐sample estimation; however, the standard Rubin's combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the nonparametric bootstrap counterpart. We evaluate the finite‐sample performance of the proposed SMIM through simulation and an application on an HIV clinical trial.

Suggested Citation

  • Shu Yang & Yilong Zhang & Guanghan Frank Liu & Qian Guan, 2023. "SMIM: A unified framework of survival sensitivity analysis using multiple imputation and martingale," Biometrics, The International Biometric Society, vol. 79(1), pages 230-240, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:230-240
    DOI: 10.1111/biom.13555
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13555
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13555?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel O. Scharfstein, 2002. "Estimation of the failure time distribution in the presence of informative censoring," Biometrika, Biometrika Trust, vol. 89(3), pages 617-634, August.
    2. S. Yang & J. K. Kim, 2016. "A note on multiple imputation for method of moments estimation," Biometrika, Biometrika Trust, vol. 103(1), pages 244-251.
    3. Rotnitzky Andrea & Daniel Scharfstein & Ting‐Li Su & James Robins, 2001. "Methods for Conducting Sensitivity Analysis of Trials with Potentially Nonignorable Competing Causes of Censoring," Biometrics, The International Biometric Society, vol. 57(1), pages 103-113, March.
    4. Pei-Yun Chen & Anastasios A. Tsiatis, 2001. "Causal Inference on the Difference of the Restricted Mean Lifetime Between Two Groups," Biometrics, The International Biometric Society, vol. 57(4), pages 1030-1038, December.
    5. Andrea Rotnitzky & Andres Farall & Andrea Bergesio & Daniel Scharfstein, 2007. "Analysis of failure time data under competing censoring mechanisms," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 307-327, June.
    6. Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    2. Díaz Iván & van der Laan Mark J., 2013. "Sensitivity Analysis for Causal Inference under Unmeasured Confounding and Measurement Error Problems," The International Journal of Biostatistics, De Gruyter, vol. 9(2), pages 149-160, November.
    3. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    4. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    5. Chi Hyun Lee & Jing Ning & Yu Shen, 2018. "Analysis of restricted mean survival time for length†biased data," Biometrics, The International Biometric Society, vol. 74(2), pages 575-583, June.
    6. Richard J. Cook & Jerald F. Lawless, 2020. "Failure time studies with intermittent observation and losses to follow‐up," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1035-1063, December.
    7. Heng Chen & Daniel F. Heitjan, 2022. "Analysis of local sensitivity to nonignorability with missing outcomes and predictors," Biometrics, The International Biometric Society, vol. 78(4), pages 1342-1352, December.
    8. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    9. Douglas E. Schaubel & Guanghui Wei, 2011. "Double Inverse-Weighted Estimation of Cumulative Treatment Effects Under Nonproportional Hazards and Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(1), pages 29-38, March.
    10. Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
    11. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    12. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    13. Greg DiRienzo, 2004. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Harvard University Biostatistics Working Paper Series 1000, Berkeley Electronic Press.
    14. Ruoqing Zhu & Ying-Qi Zhao & Guanhua Chen & Shuangge Ma & Hongyu Zhao, 2017. "Greedy outcome weighted tree learning of optimal personalized treatment rules," Biometrics, The International Biometric Society, vol. 73(2), pages 391-400, June.
    15. Frederico Poleto & Geert Molenberghs & Carlos Paulino & Julio Singer, 2011. "Sensitivity analysis for incomplete continuous data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 589-606, November.
    16. Kushal S. Shah & Haoda Fu & Michael R. Kosorok, 2023. "Stabilized direct learning for efficient estimation of individualized treatment rules," Biometrics, The International Biometric Society, vol. 79(4), pages 2843-2856, December.
    17. A. G. DiRienzo, 2003. "Nonparametric Comparison of Two Survival-Time Distributions in the Presence of Dependent Censoring," Biometrics, The International Biometric Society, vol. 59(3), pages 497-504, September.
    18. Yizhe Xu & Tom H. Greene & Adam P. Bress & Brandon K. Bellows & Yue Zhang & Zugui Zhang & Paul Kolm & William S. Weintraub & Andrew S. Moran & Jincheng Shen, 2022. "An Efficient Approach for Optimizing the Cost-effective Individualized Treatment Rule Using Conditional Random Forest," Papers 2204.10971, arXiv.org.
    19. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    20. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:230-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.