IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v26y2011i2p189-200n10.html
   My bibliography  Save this article

Exponentiated Modified Weibull Distribution

Author

Listed:
  • Elbatal I.

    (Institute of Statistical Studies and Research, Department of Mathematical Statistics, Cairo University, Egypt.)

Abstract

In this paper we consider the exponentiated modified Weibull distribution. The modified Weibull distribution, Weibull distribution and the exponentiated exponential distribution are found to be particular cases of this family. We derive the analytical shape of the corresponding density functions and hazard rate functions. The rth moment and the moment generating function are determined. Finally the distribution of order statistics and the least squares estimators of the parameters are discussed.

Suggested Citation

  • Elbatal I., 2011. "Exponentiated Modified Weibull Distribution," Stochastics and Quality Control, De Gruyter, vol. 26(2), pages 189-200, January.
  • Handle: RePEc:bpj:ecqcon:v:26:y:2011:i:2:p:189-200:n:10
    DOI: 10.1515/EQC.2011.018
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2011.018
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2011.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    2. Nadarajah, Saralees, 2005. "On the moments of the modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 114-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Satheesh Kumar & Subha R. Nair, 2021. "A generalization to the log-inverse Weibull distribution and its applications in cancer research," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    3. Edwin Ortega & Gauss Cordeiro & Michael Kattan, 2013. "The log-beta Weibull regression model with application to predict recurrence of prostate cancer," Statistical Papers, Springer, vol. 54(1), pages 113-132, February.
    4. Soliman, Ahmed A. & Abd-Ellah, Ahmed H. & Abou-Elheggag, Naser A. & Ahmed, Essam A., 2012. "Modified Weibull model: A Bayes study using MCMC approach based on progressive censoring data," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 48-57.
    5. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    6. Yadav Abhimanyu Singh & Singh S. K. & Singh Umesh, 2020. "Statistical properties and different methods of estimation for extended weighted inverted Rayleigh distribution," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 119-141, June.
    7. Sanku Dey & Tanmay Kayal & Yogesh Mani Tripathi, 2018. "Evaluation and Comparison of Estimators in the Gompertz Distribution," Annals of Data Science, Springer, vol. 5(2), pages 235-258, June.
    8. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    9. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    10. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    12. Edwin M.M. Ortega & Gauss M. Cordeiro & Michael W. Kattan, 2012. "The negative binomial--beta Weibull regression model to predict the cure of prostate cancer," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1191-1210, November.
    13. Zhang, L.F. & Xie, M. & Tang, L.C., 2007. "A study of two estimation approaches for parameters of Weibull distribution based on WPP," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 360-368.
    14. Shuo Gao & Wenhao Gui, 2019. "Parameter estimation of the inverted exponentiated Rayleigh distribution based on progressively first-failure censored samples," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 925-936, October.
    15. Devendra Kumar & Manoj Kumar, 2019. "A New Generalization of the Extended Exponential Distribution with an Application," Annals of Data Science, Springer, vol. 6(3), pages 441-462, September.
    16. Elbatal I., 2013. "The Kumaraswamy Exponentiated Pareto Distribution," Stochastics and Quality Control, De Gruyter, vol. 28(1), pages 1-8, October.
    17. Saralees Nadarajah & Gauss Cordeiro & Edwin Ortega, 2013. "The exponentiated Weibull distribution: a survey," Statistical Papers, Springer, vol. 54(3), pages 839-877, August.
    18. S. Nadarajah & S. Bakar, 2013. "A new R package for actuarial survival models," Computational Statistics, Springer, vol. 28(5), pages 2139-2160, October.
    19. Andrew R. Barron & Mirta Benšić & Kristian Sabo, 2018. "A note on weighted least square distribution fitting and full standardization of the empirical distribution function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 946-967, December.
    20. Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:26:y:2011:i:2:p:189-200:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.