IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v26y2011i2p189-200n10.html
   My bibliography  Save this article

Exponentiated Modified Weibull Distribution

Author

Listed:
  • Elbatal I.

    (Institute of Statistical Studies and Research, Department of Mathematical Statistics, Cairo University, Egypt.)

Abstract

In this paper we consider the exponentiated modified Weibull distribution. The modified Weibull distribution, Weibull distribution and the exponentiated exponential distribution are found to be particular cases of this family. We derive the analytical shape of the corresponding density functions and hazard rate functions. The rth moment and the moment generating function are determined. Finally the distribution of order statistics and the least squares estimators of the parameters are discussed.

Suggested Citation

  • Elbatal I., 2011. "Exponentiated Modified Weibull Distribution," Stochastics and Quality Control, De Gruyter, vol. 26(2), pages 189-200, January.
  • Handle: RePEc:bpj:ecqcon:v:26:y:2011:i:2:p:189-200:n:10
    DOI: 10.1515/EQC.2011.018
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2011.018
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2011.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nadarajah, Saralees, 2005. "On the moments of the modified Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 114-117.
    2. Kundu, Debasis & Raqab, Mohammad Z., 2005. "Generalized Rayleigh distribution: different methods of estimations," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 187-200, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Satheesh Kumar & Subha R. Nair, 2021. "A generalization to the log-inverse Weibull distribution and its applications in cancer research," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    2. Khan, Ruhul Ali, 2023. "Two-sample nonparametric test for proportional reversed hazards," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    3. Gauss Cordeiro & Cláudio Cristino & Elizabeth Hashimoto & Edwin Ortega, 2013. "The beta generalized Rayleigh distribution with applications to lifetime data," Statistical Papers, Springer, vol. 54(1), pages 133-161, February.
    4. Hassan M. Okasha & Abdulkareem M. Basheer & A. H. El-Baz, 2021. "Marshall–Olkin Extended Inverse Weibull Distribution: Different Methods of Estimations," Annals of Data Science, Springer, vol. 8(4), pages 769-784, December.
    5. Elizabeth Hashimoto & Gauss Cordeiro & Edwin Ortega, 2013. "The new Neyman type A beta Weibull model with long-term survivors," Computational Statistics, Springer, vol. 28(3), pages 933-954, June.
    6. Ilhan Usta, 2013. "Different estimation methods for the parameters of the extended Burr XII distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(2), pages 397-414, February.
    7. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    8. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    9. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    10. Zhang, L.F. & Xie, M. & Tang, L.C., 2007. "A study of two estimation approaches for parameters of Weibull distribution based on WPP," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 360-368.
    11. Maha A. D. Aldahlan & Ahmed Z. Afify, 2020. "The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data," Mathematics, MDPI, vol. 8(10), pages 1-26, October.
    12. Rasool Roozegar & G. G. Hamedani & Leila Amiri & Fatemeh Esfandiyari, 2020. "A New Family of Lifetime Distributions: Theory, Application and Characterizations," Annals of Data Science, Springer, vol. 7(1), pages 109-138, March.
    13. Edwin Ortega & Gauss Cordeiro & Michael Kattan, 2013. "The log-beta Weibull regression model with application to predict recurrence of prostate cancer," Statistical Papers, Springer, vol. 54(1), pages 113-132, February.
    14. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    15. Sanku Dey & Chunfang Zhang & A. Asgharzadeh & M. Ghorbannezhad, 2017. "Comparisons of Methods of Estimation for the NH Distribution," Annals of Data Science, Springer, vol. 4(4), pages 441-455, December.
    16. Sanku Dey & Tanmay Kayal & Yogesh Mani Tripathi, 2018. "Evaluation and Comparison of Estimators in the Gompertz Distribution," Annals of Data Science, Springer, vol. 5(2), pages 235-258, June.
    17. Jese Maria Sarabia & Enrique Castillo, 2005. "About a class of max-stable families with applications to income distributions," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 505-527.
    18. Showkat Ahmad Lone & Tabassum Naz Sindhu & Marwa K. H. Hassan & Tahani A. Abushal & Sadia Anwar & Anum Shafiq, 2023. "Theoretical Structure and Applications of a Newly Enhanced Gumbel Type II Model," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    19. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    20. S. Nadarajah & S. Bakar, 2013. "A new R package for actuarial survival models," Computational Statistics, Springer, vol. 28(5), pages 2139-2160, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:26:y:2011:i:2:p:189-200:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.