IDEAS home Printed from https://ideas.repec.org/a/bpj/ecqcon/v23y2008i2p243-255n8.html
   My bibliography  Save this article

Bounds for Distorted Risk Measures

Author

Listed:
  • Goncalves Marcelo

    (Institute of Mathematics and Statistics, University of Sao Paulo, C.P. 66281, 05311-970 Sao Paulo, Brazil)

  • Kolev Nikolai

    (Institute of Mathematics and Statistics, University of Sao Paulo, C.P. 66281, 05311-970 Sao Paulo, Brazil. nkolev@ime.usp.br)

  • Fabris Antonio

    (Institute of Mathematics and Statistics, University of Sao Paulo, C.P. 66281, 05311-970 Sao Paulo, Brazil)

Abstract

The aim of this paper is to provide bounds for distorted risk measures when the joint distribution of the risk factors is unspecified but the marginal distributions are known. For convex distortion functions, a methodology to calculate the corresponding bounds is suggested and illustrated by several examples.

Suggested Citation

  • Goncalves Marcelo & Kolev Nikolai & Fabris Antonio, 2008. "Bounds for Distorted Risk Measures," Stochastics and Quality Control, De Gruyter, vol. 23(2), pages 243-255, January.
  • Handle: RePEc:bpj:ecqcon:v:23:y:2008:i:2:p:243-255:n:8
    DOI: 10.1515/EQC.2008.243
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/EQC.2008.243
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/EQC.2008.243?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Embrechts, Paul & Puccetti, Giovanni, 2006. "Bounds for functions of multivariate risks," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 526-547, February.
    2. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    3. Denneberg, Dieter, 1990. "Premium Calculation: Why Standard Deviation Should be Replaced by Absolute Deviation1," ASTIN Bulletin, Cambridge University Press, vol. 20(2), pages 181-190, November.
    4. Paul Embrechts & Giovanni Puccetti, 2006. "Bounds for Functions of Dependent Risks," Finance and Stochastics, Springer, vol. 10(3), pages 341-352, September.
    5. Wang, Shaun, 1996. "Premium Calculation by Transforming the Layer Premium Density," ASTIN Bulletin, Cambridge University Press, vol. 26(1), pages 71-92, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goncalves Marcelo & Kolev Nikolai & Fabris Antonio Elias, 2008. "Bounds for Quantile-Based Risk Measures of Functions of Dependent Random Variables," Stochastics and Quality Control, De Gruyter, vol. 23(1), pages 55-70, January.
    2. Volker Kratschmer & Alexander Schied & Henryk Zahle, 2012. "Comparative and qualitative robustness for law-invariant risk measures," Papers 1204.2458, arXiv.org, revised Jan 2014.
    3. Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2011. "Stochastic comparisons of distorted variability measures," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 11-17, July.
    4. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    5. Volker Krätschmer & Alexander Schied & Henryk Zähle, 2014. "Comparative and qualitative robustness for law-invariant risk measures," Finance and Stochastics, Springer, vol. 18(2), pages 271-295, April.
    6. William A. Barnett & Kangzheng Ding, 2024. "Expected Utility Maximization Under Weakened Assumptions Consistent With Behavioral Economics," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202418, University of Kansas, Department of Economics.
    7. Hurlimann, W., 1999. "Non-optimality of a linear combination of proportional and non-proportional reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 219-227, May.
    8. Debora Daniela Escobar & Georg Ch. Pflug, 2020. "The distortion principle for insurance pricing: properties, identification and robustness," Annals of Operations Research, Springer, vol. 292(2), pages 771-794, September.
    9. Daniela Escobar & Georg Pflug, 2018. "The distortion principle for insurance pricing: properties, identification and robustness," Papers 1809.06592, arXiv.org.
    10. Stanislaw Heilpern, 2002. "Using Choquet integral in economics," Statistical Papers, Springer, vol. 43(1), pages 53-73, January.
    11. Denis Chetverikov & Yukun Liu & Aleh Tsyvinski, 2022. "Weighted-average quantile regression," Papers 2203.03032, arXiv.org.
    12. Lin, Feng & Peng, Liang & Xie, Jiehua & Yang, Jingping, 2018. "Stochastic distortion and its transformed copula," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 148-166.
    13. Wei Wang & Huifu Xu, 2023. "Preference robust state-dependent distortion risk measure on act space and its application in optimal decision making," Computational Management Science, Springer, vol. 20(1), pages 1-51, December.
    14. Sainan Zhang & Huifu Xu, 2022. "Insurance premium-based shortfall risk measure induced by cumulative prospect theory," Computational Management Science, Springer, vol. 19(4), pages 703-738, October.
    15. Dhaene, Jan & Laeven, Roger J.A. & Zhang, Yiying, 2022. "Systemic risk: Conditional distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 126-145.
    16. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    17. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    18. Mahmoud Hamada & Emiliano A. Valdez, 2008. "CAPM and Option Pricing With Elliptically Contoured Distributions," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 387-409, June.
    19. Wei Wang & Huifu Xu, 2023. "Preference robust distortion risk measure and its application," Mathematical Finance, Wiley Blackwell, vol. 33(2), pages 389-434, April.
    20. Tsanakas, Andreas, 2008. "Risk measurement in the presence of background risk," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 520-528, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ecqcon:v:23:y:2008:i:2:p:243-255:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.