IDEAS home Printed from https://ideas.repec.org/a/bpj/apjrin/v17y2023i1p113-142n1.html
   My bibliography  Save this article

Automatic Segmentation of Insurance Rating Classes Under Ordinal Constraints via Group Fused Lasso

Author

Listed:
  • Takahashi Atsumori
  • Nomura Shunichi

    (Faculty of Commerce, Graduate School of Accountancy, Waseda University, Tokyo, Japan)

Abstract

This paper proposes a sparse regularization technique for ratemaking under practical constraints. In tariff analysis of general insurance, rating factors with many categories are often grouped into a smaller number of classes to obtain reliable estimate of expected claim cost and make the tariff simple to reference. However, the number of rating-class segmentation combinations is often very large, making it computationally impossible to compare all the possible segmentations. In such cases, an L1 regularization method called the fused lasso is useful for integrating adjacent classes with similar risk levels in its inference process. Particularly, an extension of the fused lasso, known as the group fused lasso, enables consistent segmentation in estimating expected claim frequency and expected claim severity using generalized linear models. In this study, we enhance the group fused lasso by imposing ordinal constraints between the adjacent classes. Such constraints are often required in practice based on bonus–malus systems and actuarial insight on risk factors. We also propose an inference algorithm that uses the alternating direction method of multipliers. We apply the proposed method to motorcycle insurance claim data, and demonstrate how some adjacent categories are grouped into clusters with approximately homogeneous levels of expected claim frequency and severity.

Suggested Citation

  • Takahashi Atsumori & Nomura Shunichi, 2023. "Automatic Segmentation of Insurance Rating Classes Under Ordinal Constraints via Group Fused Lasso," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 17(1), pages 113-142, January.
  • Handle: RePEc:bpj:apjrin:v:17:y:2023:i:1:p:113-142:n:1
    DOI: 10.1515/apjri-2022-0012
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/apjri-2022-0012
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/apjri-2022-0012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. SriDaran, Dilan & Sherris, Michael & Villegas, Andrés M. & Ziveyi, Jonathan, 2022. "A Group Regularisation Approach For Constructing Generalised Age-Period-Cohort Mortality Projection Models," ASTIN Bulletin, Cambridge University Press, vol. 52(1), pages 247-289, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Zhao, Xin & Zhang, Jingru & Lin, Wei, 2023. "Clustering multivariate count data via Dirichlet-multinomial network fusion," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    3. Amel Awadelkarim & Arjun Seshadri & Itai Ashlagi & Irene Lo & Johan Ugander, 2023. "Rank-heterogeneous Preference Models for School Choice," Papers 2306.01801, arXiv.org.
    4. Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
    5. Kaimeng Zhang & Chi Tim Ng & Myung Hwan Na, 2020. "Real time prediction of irregular periodic time series data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 501-511, April.
    6. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    7. Matthias Weber & Martin Schumacher & Harald Binder, 2014. "Regularized Regression Incorporating Network Information: Simultaneous Estimation of Covariate Coefficients and Connection Signs," Tinbergen Institute Discussion Papers 14-089/I, Tinbergen Institute.
    8. Bailly, Hugo & Mortier, Frédéric & Giraud, Gaël, 2024. "Empirical analysis of a debt-augmented Goodwin model for the United States," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 619-633.
    9. Li, Li & Li, Han & Panagiotelis, Anastasios, 2025. "Boosting domain-specific models with shrinkage: An application in mortality forecasting," International Journal of Forecasting, Elsevier, vol. 41(1), pages 191-207.
    10. ShengLi Tzeng & Bo-Yu Chen & Hsin-Cheng Huang, 2024. "Assessing Spatial Stationarity and Segmenting Spatial Processes into Stationary Components," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(2), pages 301-319, June.
    11. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2013. "A Survey of L1 Regression," International Statistical Review, International Statistical Institute, vol. 81(3), pages 361-387, December.
    12. Daye, Z. John & Jeng, X. Jessie, 2009. "Shrinkage and model selection with correlated variables via weighted fusion," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1284-1298, February.
    13. Binhuan Wang & Lanqiu Yao & Jiyuan Hu & Huilin Li, 2023. "A New Algorithm for Convex Biclustering and Its Extension to the Compositional Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(1), pages 193-216, April.
    14. Chen, Yuanxing & Fang, Kuangnan & Lan, Wei & Tsai, Chih-Ling & Zhang, Qingzhao, 2025. "Community influence analysis in social networks," Computational Statistics & Data Analysis, Elsevier, vol. 202(C).
    15. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    16. Angelo Milfont & Alvaro Veiga, 2025. "Structural breaks detection and variable selection in dynamic linear regression via the Iterative Fused LASSO in high dimension," Papers 2502.20816, arXiv.org, revised Apr 2025.
    17. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    18. Kenneth Lange & Eric C. Chi & Hua Zhou, 2014. "A Brief Survey of Modern Optimization for Statisticians," International Statistical Review, International Statistical Institute, vol. 82(1), pages 46-70, April.
    19. Li, Houjian & Tang, Mengqian & Cao, Andi & Guo, Lili, 2024. "How to reduce firm pollution discharges: Does political leaders' gender matter?," Technological Forecasting and Social Change, Elsevier, vol. 204(C).
    20. Laura Freijeiro‐González & Manuel Febrero‐Bande & Wenceslao González‐Manteiga, 2022. "A Critical Review of LASSO and Its Derivatives for Variable Selection Under Dependence Among Covariates," International Statistical Review, International Statistical Institute, vol. 90(1), pages 118-145, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:apjrin:v:17:y:2023:i:1:p:113-142:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.