IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v12y2023i3ne469.html
   My bibliography  Save this article

A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment

Author

Listed:
  • Franck Bertagnolio
  • Michaela Herr
  • Kaj Dam Madsen

Abstract

The noise emission of wind turbines and farms can be an important and limiting factor for future cost reductions and growth of wind energy. Closing scientific and technological gaps on wind turbine noise is thus directly supporting the further development of renewable energy while reducing adverse reactions toward wind farms. The present article is providing guidance on the most relevant research directions from an engineering perspective, namely: simulation methods, wind tunnel testing, and wind turbine design. Each topic is addressed separately and specific scientific challenges are identified. Future research directions that may improve our physical understanding of wind turbine noise, as well as facilitate the deployment of wind energy, are outlined. It is concluded that future scientific research on the topic of wind turbine noise should be conducted in a multidisciplinary context to maximize its impact. The suggested topics shall be seen as a collection of what is seen as the most relevant topics across research and product development but shall not be seen as exclusive or interlinked with specific development plans. This article is categorized under: Sustainable Energy > Wind Energy Human and Social Dimensions > Social Acceptance

Suggested Citation

  • Franck Bertagnolio & Michaela Herr & Kaj Dam Madsen, 2023. "A roadmap for required technological advancements to further reduce onshore wind turbine noise impact on the environment," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(3), May.
  • Handle: RePEc:bla:wireae:v:12:y:2023:i:3:n:e469
    DOI: 10.1002/wene.469
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.469
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.469?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Greco, Luca & Testa, Claudio, 2021. "Wind turbine unsteady aerodynamics and performance by a free-wake panel method," Renewable Energy, Elsevier, vol. 164(C), pages 444-459.
    2. Jan Delfs & Lothar Bertsch & Christoph Zellmann & Lennart Rossian & Ehsan Kian Far & Tobias Ring & Sabine C. Langer, 2018. "Aircraft Noise Assessment—From Single Components to Large Scenarios," Energies, MDPI, vol. 11(2), pages 1-25, February.
    3. Ofelia Jianu & Marc A. Rosen & Greg Naterer, 2012. "Noise Pollution Prevention in Wind Turbines: Status and Recent Advances," Sustainability, MDPI, vol. 4(6), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    2. Luca Fredianelli & Marco Nastasi & Marco Bernardini & Francesco Fidecaro & Gaetano Licitra, 2020. "Pass-by Characterization of Noise Emitted by Different Categories of Seagoing Ships in Ports," Sustainability, MDPI, vol. 12(5), pages 1-12, February.
    3. Buckley, Tadhg & Watson, Phoebe & Cahill, Paul & Jaksic, Vesna & Pakrashi, Vikram, 2018. "Mitigating the structural vibrations of wind turbines using tuned liquid column damper considering soil-structure interaction," Renewable Energy, Elsevier, vol. 120(C), pages 322-341.
    4. Kyle, Ryan & Früh, Wolf-Gerrit, 2022. "The transitional states of a floating wind turbine during high levels of surge," Renewable Energy, Elsevier, vol. 200(C), pages 1469-1489.
    5. Mohsen Gorakifard & Clara Salueña & Ildefonso Cuesta & Ehsan Kian Far, 2021. "Analysis of Aeroacoustic Properties of the Local Radial Point Interpolation Cumulant Lattice Boltzmann Method," Energies, MDPI, vol. 14(5), pages 1-18, March.
    6. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    7. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    8. Tadas Zdankus & Jurgita Cerneckiene & Andrius Jurelionis & Juozas Vaiciunas, 2016. "Experimental Study of a Small Scale Hydraulic System for Mechanical Wind Energy Conversion into Heat," Sustainability, MDPI, vol. 8(7), pages 1-18, July.
    9. Adam Zagubień & Katarzyna Wolniewicz, 2022. "Energy Efficiency of Small Wind Turbines in an Urbanized Area—Case Studies," Energies, MDPI, vol. 15(14), pages 1-15, July.
    10. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    11. Merino-Martínez, Roberto & Pieren, Reto & Schäffer, Beat, 2021. "Holistic approach to wind turbine noise: From blade trailing-edge modifications to annoyance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:12:y:2023:i:3:n:e469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.