IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v76y2022i3p331-346.html
   My bibliography  Save this article

On some limitations of probabilistic models for dimension‐reduction: Illustration in the case of probabilistic formulations of partial least squares

Author

Listed:
  • Lola Etiévant
  • Vivian Viallon

Abstract

Partial least squares (PLS) refer to a class of dimension‐reduction techniques aiming at the identification of two sets of components with maximal covariance, to model the relationship between two sets of observed variables x∈ℝp and y∈ℝq, with p≥1,q≥1. Probabilistic formulations have recently been proposed for several versions of the PLS. Focusing first on the probabilistic formulation of the PLS‐SVD proposed by el Bouhaddani et al., we establish that the constraints on their model parameters are too restrictive and define particular distributions for (x,y), under which components with maximal covariance (solutions of PLS‐SVD) are also necessarily of respective maximal variances (solutions of principal components analyses of x and y, respectively). We propose an alternative probabilistic formulation of PLS‐SVD, no longer restricted to these particular distributions. We then present numerical illustrations of the limitation of the original model of el Bouhaddani et al. We also briefly discuss similar limitations in another latent variable model for dimension‐reduction.

Suggested Citation

  • Lola Etiévant & Vivian Viallon, 2022. "On some limitations of probabilistic models for dimension‐reduction: Illustration in the case of probabilistic formulations of partial least squares," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 331-346, August.
  • Handle: RePEc:bla:stanee:v:76:y:2022:i:3:p:331-346
    DOI: 10.1111/stan.12262
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12262
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andriy Derkach & Ruth M. Pfeiffer & Ting‐Huei Chen & Joshua N. Sampson, 2019. "High dimensional mediation analysis with latent variables," Biometrics, The International Biometric Society, vol. 75(3), pages 745-756, September.
    2. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    3. el Bouhaddani, Said & Uh, Hae-Won & Hayward, Caroline & Jongbloed, Geurt & Houwing-Duistermaat, Jeanine, 2018. "Probabilistic partial least squares model: Identifiability, estimation and application," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 331-346.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    2. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Xin Xu & Yang Lu & Yupeng Zhou & Zhiguo Fu & Yanjie Fu & Minghao Yin, 2021. "An Information-Explainable Random Walk Based Unsupervised Network Representation Learning Framework on Node Classification Tasks," Mathematics, MDPI, vol. 9(15), pages 1-14, July.
    4. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    5. Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Papers 2310.17278, arXiv.org, revised Jan 2024.
    6. Chen, Tao & Martin, Elaine & Montague, Gary, 2009. "Robust probabilistic PCA with missing data and contribution analysis for outlier detection," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3706-3716, August.
    7. Wang, Shao-Hsuan & Huang, Su-Yun, 2022. "Perturbation theory for cross data matrix-based PCA," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    8. Cook, R. Dennis, 2022. "A slice of multivariate dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    10. Ligon, Ethan, 2017. "Estimating household welfare from disaggregate expenditures," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt5gc4h1fm, Department of Agricultural & Resource Economics, UC Berkeley.
    11. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    12. Marconi, Gabriele, 2014. "European higher education policies and the problem of estimating a complex model with a small cross-section," MPRA Paper 87600, University Library of Munich, Germany.
    13. Jingying Yang, 2024. "Element Aggregation for Estimation of High-Dimensional Covariance Matrices," Mathematics, MDPI, vol. 12(7), pages 1-16, March.
    14. Dimitris Korobilis & Maximilian Schroder, 2022. "Probabilistic quantile factor analysis," Papers 2212.10301, arXiv.org, revised Dec 2022.
    15. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    16. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Matteo Barigozzi, 2023. "Asymptotic equivalence of Principal Components and Quasi Maximum Likelihood estimators in Large Approximate Factor Models," Papers 2307.09864, arXiv.org, revised Sep 2023.
    18. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    19. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    20. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:76:y:2022:i:3:p:331-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.