IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v71y2017i1p58-82.html
   My bibliography  Save this article

Smooth estimation of a monotone hazard and a monotone density under random censoring

Author

Listed:
  • Hendrik P. Lopuhaä
  • Eni Musta

Abstract

No abstract is available for this item.

Suggested Citation

  • Hendrik P. Lopuhaä & Eni Musta, 2017. "Smooth estimation of a monotone hazard and a monotone density under random censoring," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(1), pages 58-82, January.
  • Handle: RePEc:bla:stanee:v:71:y:2017:i:1:p:58-82
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/stan.12101
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ming-Yen Cheng & Peter Hall & Dongsheng Tu, 2006. "Confidence bands for hazard rates under random censorship," Biometrika, Biometrika Trust, vol. 93(2), pages 357-366, June.
    2. Groeneboom,Piet & Jongbloed,Geurt, 2014. "Nonparametric Estimation under Shape Constraints," Cambridge Books, Cambridge University Press, number 9780521864015, Enero-Abr.
    3. Cécile Durot & Piet Groeneboom & Hendrik P. Lopuhaä, 2013. "Testing equality of functions under monotonicity constraints," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(4), pages 939-970, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopuhaä, Hendrik P. & Musta, Eni, 2018. "The distance between a naive cumulative estimator and its least concave majorant," Statistics & Probability Letters, Elsevier, vol. 139(C), pages 119-128.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao, Lu, 2022. "Identification of the outcome distribution and sensitivity analysis under weak confounder–instrument interaction," Statistics & Probability Letters, Elsevier, vol. 189(C).
    2. Ruixuan Liu & Zhengfei Yu, 2019. "Simple Semiparametric Estimation of Ordered Response Models: with an Application to the Interdependence Duration Models," Tsukuba Economics Working Papers 2019-004, Faculty of Humanities and Social Sciences, University of Tsukuba.
    3. Arai, Yoichi & Otsu, Taisuke & Xu, Mengshan, 2024. "GLS under monotone heteroskedasticity," Journal of Econometrics, Elsevier, vol. 246(1).
    4. Xu, Mengshan & Otsu, Taisuke, 2020. "Score estimation of monotone partially linear index model," LSE Research Online Documents on Economics 106698, London School of Economics and Political Science, LSE Library.
    5. Giguelay, J. & Huet, S., 2018. "Testing k-monotonicity of a discrete distribution. Application to the estimation of the number of classes in a population," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 96-115.
    6. Taisuke Otsu & Mengshan Xu, 2019. "Score estimation of monotone partially linear index model," STICERD - Econometrics Paper Series 603, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    7. Xi Chen & Victor Chernozhukov & Iv'an Fern'andez-Val & Scott Kostyshak & Ye Luo, 2018. "Shape-Enforcing Operators for Point and Interval Estimators," Papers 1809.01038, arXiv.org, revised Feb 2021.
    8. Sungwook Kim & Michael P. Fay & Michael A. Proschan, 2021. "Valid and approximately valid confidence intervals for current status data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 438-452, July.
    9. Lu Mao & Dan-Yu Lin & Donglin Zeng, 2017. "Semiparametric regression analysis of interval-censored competing risks data," Biometrics, The International Biometric Society, vol. 73(3), pages 857-865, September.
    10. Piet Groeneboom & Geurt Jongbloed, 2024. "Confidence intervals in monotone regression," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(4), pages 1749-1781, December.
    11. M Bebbington & C D Lai & D N P Murthy & R Zitikis, 2009. "Modelling N- and W-shaped hazard rate functions without mixing distributions," Journal of Risk and Reliability, , vol. 223(1), pages 59-69, March.
    12. Alexander Henzi & Johanna F. Ziegel & Tilmann Gneiting, 2021. "Isotonic distributional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 963-993, November.
    13. Hisatoshi Tanaka, 2021. "A Necessary Condition for Semiparametric Efficiency of Experimental Designs," Working Papers 2024, Waseda University, Faculty of Political Science and Economics.
    14. Tommaso Lando, 2022. "Testing convexity of the generalised hazard function," Statistical Papers, Springer, vol. 63(4), pages 1271-1289, August.
    15. Ted Westling & Peter Gilbert & Marco Carone, 2020. "Causal isotonic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 719-747, July.
    16. Jiaying Gu & Roger Koenker, 2018. "Nonparametric maximum likelihood methods for binary response models with random coefficients," Papers 1811.03329, arXiv.org, revised Jan 2020.
    17. Yao Luo & Yuanyuan Wan, 2018. "Integrated-Quantile-Based Estimation for First-Price Auction Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 173-180, January.
    18. Xiaohong Chen & Yin Jia Jeff Qiu, 2016. "Methods for Nonparametric and Semiparametric Regressions with Endogeneity: A Gentle Guide," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 259-290, October.
    19. Matias D. Cattaneo & Rocío Titiunik, 2022. "Regression Discontinuity Designs," Annual Review of Economics, Annual Reviews, vol. 14(1), pages 821-851, August.
    20. Dümbgen, Lutz & Mösching, Alexandre & Strähl, Christof, 2021. "Active set algorithms for estimating shape-constrained density ratios," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:71:y:2017:i:1:p:58-82. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.