IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v47y2020i4p1114-1148.html
   My bibliography  Save this article

Post hoc false positive control for structured hypotheses

Author

Listed:
  • Guillermo Durand
  • Gilles Blanchard
  • Pierre Neuvial
  • Etienne Roquain

Abstract

In a high‐dimensional multiple testing framework, we present new confidence bounds on the false positives contained in subsets S of selected null hypotheses. These bounds are post hoc in the sense that the coverage probability holds simultaneously over all S, possibly chosen depending on the data. This article focuses on the common case of structured null hypotheses, for example, along a tree, a hierarchy, or geometrically (spatially or temporally). Following recent advances in post hoc inference, we build confidence bounds for some prespecified forest‐structured subsets and deduce a bound for any subset S by interpolation. The proposed bounds are shown to improve substantially previous ones when the signal is locally structured. Our findings are supported both by theoretical results and numerical experiments. Moreover, our bounds can be obtained by an algorithm (with complexity bilinear in the sizes of the reference hierarchy and of the selected subset) that is implemented in the open‐source R package sansSouci available from https://github.com/pneuvial/sanssouci, making our approach operational.

Suggested Citation

  • Guillermo Durand & Gilles Blanchard & Pierre Neuvial & Etienne Roquain, 2020. "Post hoc false positive control for structured hypotheses," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1114-1148, December.
  • Handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1114-1148
    DOI: 10.1111/sjos.12453
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12453
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicolai Meinshausen, 2006. "False Discovery Control for Multiple Tests of Association Under General Dependence," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 227-237, June.
    2. Jesse Hemerik & Jelle J. Goeman, 2018. "False discovery proportion estimation by permutations: confidence for significance analysis of microarrays," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 137-155, January.
    3. Farcomeni, Alessio & Pacillo, Simona, 2011. "A conservative estimator for the proportion of false nulls based on Dvoretzky, Kiefer and Wolfowitz inequality," Statistics & Probability Letters, Elsevier, vol. 81(12), pages 1867-1870.
    4. Yoav Benjamini & Marina Bogomolov, 2014. "Selective inference on multiple families of hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 297-318, January.
    5. Meijer Rosa J. & Krebs Thijmen J.P. & Goeman Jelle J., 2015. "A region-based multiple testing method for hypotheses ordered in space or time," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(1), pages 1-19, February.
    6. Kim Kyung In & Roquain Etienne & van de Wiel Mark A, 2010. "Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-25, November.
    7. Yoav Benjamini & Daniel Yekutieli, 2005. "False Discovery Rate-Adjusted Multiple Confidence Intervals for Selected Parameters," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 71-81, March.
    8. Genovese, Christopher R. & Wasserman, Larry, 2006. "Exceedance Control of the False Discovery Proportion," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1408-1417, December.
    9. Aaditya Ramdas & Jianbo Chen & Martin J Wainwright & Michael I Jordan, 2019. "A sequential algorithm for false discovery rate control on directed acyclic graphs," Biometrika, Biometrika Trust, vol. 106(1), pages 69-86.
    10. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    11. Lihua Lei & William Fithian, 2018. "AdaPT: an interactive procedure for multiple testing with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 649-679, September.
    12. Nicolai Meinshausen, 2008. "Hierarchical testing of variable importance," Biometrika, Biometrika Trust, vol. 95(2), pages 265-278.
    13. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingyun Cai & Hock Peng Chan, 2017. "A Double Application of the Benjamini-Hochberg Procedure for Testing Batched Hypotheses," Methodology and Computing in Applied Probability, Springer, vol. 19(2), pages 429-443, June.
    2. Claude Renaux & Laura Buzdugan & Markus Kalisch & Peter Bühlmann, 2020. "Hierarchical inference for genome-wide association studies: a view on methodology with software," Computational Statistics, Springer, vol. 35(1), pages 1-40, March.
    3. Ruodu Wang & Aaditya Ramdas, 2022. "False discovery rate control with e‐values," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 822-852, July.
    4. Yoav Benjamini, 2010. "Discovering the false discovery rate," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 405-416, September.
    5. Haibing Zhao & Wing Kam Fung, 2018. "Controlling mixed directional false discovery rate in multidimensional decisions with applications to microarray studies," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 316-337, June.
    6. Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
    7. Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
    8. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    9. Georgios Sermpinis & Arman Hassanniakalager & Charalampos Stasinakis & Ioannis Psaradellis, 2018. "Technical Analysis and Discrete False Discovery Rate: Evidence from MSCI Indices," Papers 1811.06766, arXiv.org, revised Jun 2019.
    10. Dennis Leung & Wenguang Sun, 2022. "ZAP: Z$$ Z $$‐value adaptive procedures for false discovery rate control with side information," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1886-1946, November.
    11. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    12. Chang, Chiu-Lan & Cai, Qingyun, 2023. "Stock return anomalies identification during the Covid-19 with the application of a grouped multiple comparison procedure," Economic Analysis and Policy, Elsevier, vol. 79(C), pages 168-183.
    13. Sofia Palionnaya & Oleg Shestakov, 2020. "Asymptotic Properties of MSE Estimate for the False Discovery Rate Controlling Procedures in Multiple Hypothesis Testing," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    14. Yu-Chin Hsu & Hsiou-Wei Lin & Kendro Vincent, 2017. "Do Cross-Sectional Stock Return Predictors Pass the Test without Data-Snooping Bias?," IEAS Working Paper : academic research 17-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    15. Rina Foygel Barber & Aaditya Ramdas, 2017. "The p-filter: multilayer false discovery rate control for grouped hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1247-1268, September.
    16. Goeman Jelle J. & Finos Livio, 2012. "The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-18, January.
    17. Otília Menyhart & Boglárka Weltz & Balázs Győrffy, 2021. "MultipleTesting.com: A tool for life science researchers for multiple hypothesis testing correction," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-12, June.
    18. Alessio Farcomeni, 2009. "Generalized Augmentation to Control the False Discovery Exceedance in Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 501-517, September.
    19. Dong Luo & Arya Ebadi & Kristen Emery & Yilun He & William Stafford Noble & Uri Keich, 2023. "Competition‐based control of the false discovery proportion," Biometrics, The International Biometric Society, vol. 79(4), pages 3472-3484, December.
    20. Antoine Bichat & Christophe Ambroise & Mahendra Mariadassou, 2022. "Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process," Computational Statistics, Springer, vol. 37(3), pages 995-1013, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:47:y:2020:i:4:p:1114-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.