IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v44y2017i3p598-616.html
   My bibliography  Save this article

Asymptotic Optimality of Sparse Linear Discriminant Analysis with Arbitrary Number of Classes

Author

Listed:
  • Ruiyan Luo
  • Xin Qi

Abstract

No abstract is available for this item.

Suggested Citation

  • Ruiyan Luo & Xin Qi, 2017. "Asymptotic Optimality of Sparse Linear Discriminant Analysis with Arbitrary Number of Classes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 598-616, September.
  • Handle: RePEc:bla:scjsta:v:44:y:2017:i:3:p:598-616
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12267
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Ping & Brock, Guy N. & Parrish, Rudolph S., 2009. "Modified linear discriminant analysis approaches for classification of high-dimensional microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1674-1687, March.
    2. Jianqing Fan & Yang Feng & Xin Tong, 2012. "A road to classification in high dimensional space: the regularized optimal affine discriminant," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 745-771, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rauf Ahmad, M. & Pavlenko, Tatjana, 2018. "A U-classifier for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 269-283.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irina Gaynanova & James G. Booth & Martin T. Wells, 2016. "Simultaneous Sparse Estimation of Canonical Vectors in the ≫ Setting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 696-706, April.
    2. Frénay, Benoît & Doquire, Gauthier & Verleysen, Michel, 2014. "Estimating mutual information for feature selection in the presence of label noise," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 832-848.
    3. Parrish, Rudolph S. & Spencer III, Horace J. & Xu, Ping, 2009. "Distribution modeling and simulation of gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1650-1660, March.
    4. Oda, Ryoya & Suzuki, Yuya & Yanagihara, Hirokazu & Fujikoshi, Yasunori, 2020. "A consistent variable selection method in high-dimensional canonical discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    5. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    6. Zeyu Wu & Cheng Wang & Weidong Liu, 2023. "A unified precision matrix estimation framework via sparse column-wise inverse operator under weak sparsity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 619-648, August.
    7. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    8. Ivana Krtolica & Dragan Savić & Bojana Bajić & Snežana Radulović, 2022. "Machine Learning for Water Quality Assessment Based on Macrophyte Presence," Sustainability, MDPI, vol. 15(1), pages 1-13, December.
    9. Yixin Fang & Yang Feng & Ming Yuan, 2014. "Regularized principal components of heritability," Computational Statistics, Springer, vol. 29(3), pages 455-465, June.
    10. Liu, Jianyu & Yu, Guan & Liu, Yufeng, 2019. "Graph-based sparse linear discriminant analysis for high-dimensional classification," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 250-269.
    11. Shen, Yanfeng & Lin, Zhengyan, 2015. "An adaptive test for the mean vector in large-p-small-n problems," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 25-38.
    12. Yaqiong Cui & Jukka Sirén & Timo Koski & Jukka Corander, 2016. "Simultaneous Predictive Gaussian Classifiers," Journal of Classification, Springer;The Classification Society, vol. 33(1), pages 73-102, April.
    13. A. Poterie & J.-F. Dupuy & V. Monbet & L. Rouvière, 2019. "Classification tree algorithm for grouped variables," Computational Statistics, Springer, vol. 34(4), pages 1613-1648, December.
    14. Brendan P. W. Ames & Mingyi Hong, 2016. "Alternating direction method of multipliers for penalized zero-variance discriminant analysis," Computational Optimization and Applications, Springer, vol. 64(3), pages 725-754, July.
    15. Hongtu Zhu & Dan Shen & Xuewei Peng & Leo Yufeng Liu, 2017. "MWPCR: Multiscale Weighted Principal Component Regression for High-Dimensional Prediction," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1009-1021, July.
    16. Nickolay T. Trendafilov & Tsegay Gebrehiwot Gebru, 2016. "Recipes for sparse LDA of horizontal data," METRON, Springer;Sapienza Università di Roma, vol. 74(2), pages 207-221, August.
    17. Kubokawa, Tatsuya & Hyodo, Masashi & Srivastava, Muni S., 2013. "Asymptotic expansion and estimation of EPMC for linear classification rules in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 496-515.
    18. Bak, Britta Anker & Jensen, Jens Ledet, 2016. "High dimensional classifiers in the imbalanced case," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 46-59.
    19. Luigi Ippoliti & Simone Di Zio & Arcangelo Merla, 2014. "Classification of biomedical signals for differential diagnosis of Raynaud's phenomenon," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1830-1847, August.
    20. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:44:y:2017:i:3:p:598-616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.