IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v76y2014i5p715-726.html
   My bibliography  Save this article

Does Output Gap, Labour's Share or Unemployment Rate Drive Inflation?

Author

Listed:
  • Markku Lanne
  • Jani Luoto

Abstract

type="main" xml:id="obes12041-abs-0001"> We propose a new methodology for ranking in probability the commonly proposed drivers of inflation in the new Keynesian model. The approach is based on Bayesian model selection among restricted vector autoregressive (VAR) models, each of which embodies only one or none of the candidate variables as the driver. Simulation experiments suggest that our procedure is superior to the previously used conventional pairwise Granger causality tests in detecting the true driver. Empirical results lend little support to labour share, output gap or unemployment rate as the driver of US inflation.

Suggested Citation

  • Markku Lanne & Jani Luoto, 2014. "Does Output Gap, Labour's Share or Unemployment Rate Drive Inflation?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 715-726, October.
  • Handle: RePEc:bla:obuest:v:76:y:2014:i:5:p:715-726
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/obes.2014.76.issue-5
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gali, Jordi & Gertler, Mark, 1999. "Inflation dynamics: A structural econometric analysis," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 195-222, October.
    2. Fernandez, Carmen & Ley, Eduardo & Steel, Mark F. J., 2001. "Benchmark priors for Bayesian model averaging," Journal of Econometrics, Elsevier, vol. 100(2), pages 381-427, February.
    3. Frank Smets & Rafael Wouters, 2007. "Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach," American Economic Review, American Economic Association, vol. 97(3), pages 586-606, June.
    4. Basistha, Arabinda & Nelson, Charles R., 2007. "New measures of the output gap based on the forward-looking new Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 498-511, March.
    5. Matthes, Christian & Wang, Mu-Chun, 2012. "What drives inflation in New Keynesian models?," Economics Letters, Elsevier, vol. 114(3), pages 338-342.
    6. Xavier Sala-I-Martin & Gernot Doppelhofer & Ronald I. Miller, 2004. "Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach," American Economic Review, American Economic Association, vol. 94(4), pages 813-835, September.
    7. Linde, Jesper, 2005. "Estimating New-Keynesian Phillips curves: A full information maximum likelihood approach," Journal of Monetary Economics, Elsevier, vol. 52(6), pages 1135-1149, September.
    8. James M. Nason & Gregor W. Smith, 2008. "The New Keynesian Phillips curve : lessons from single-equation econometric estimation," Economic Quarterly, Federal Reserve Bank of Richmond, issue Fall, pages 361-395.
    9. Theo S. Eicher & Chris Papageorgiou & Adrian E. Raftery, 2011. "Default priors and predictive performance in Bayesian model averaging, with application to growth determinants," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(1), pages 30-55, January/F.
    10. Fernandez-Villaverde, Jesus & Francisco Rubio-Ramirez, Juan, 2004. "Comparing dynamic equilibrium models to data: a Bayesian approach," Journal of Econometrics, Elsevier, vol. 123(1), pages 153-187, November.
    11. Calvo, Guillermo A., 1983. "Staggered prices in a utility-maximizing framework," Journal of Monetary Economics, Elsevier, vol. 12(3), pages 383-398, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Markku Lanne & Jani Luoto, 2016. "Noncausal Bayesian Vector Autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1392-1406, November.

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:76:y:2014:i:5:p:715-726. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.