IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v75y2013i1p6-22.html
   My bibliography  Save this article

Model Selection in Equations with Many ‘Small’ Effects

Author

Listed:
  • Jennifer L. Castle
  • Jurgen A. Doornik
  • David F. Hendry

Abstract

High dimensional general unrestricted models (GUMs) may include important individual determinants, many small relevant effects, and irrelevant variables. Automatic model selection procedures can handle more candidate variables than observations, allowing substantial dimension reduction from GUMs with salient regressors, lags, non-linear transformations, and multiple location shifts, together with all the principal components, possibly representing 'factor' structures, as perfect collinearity is also unproblematic. 'Factors' can capture small influences that selection may not retain individually. The final model can implicitly include more variables than observations, entering via 'factors'. We simulate selection in several special cases to illustrate.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2013. "Model Selection in Equations with Many ‘Small’ Effects," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(1), pages 6-22, February.
  • Handle: RePEc:bla:obuest:v:75:y:2013:i:1:p:6-22
    DOI: j.1468-0084.2012.00727.x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0084.2012.00727.x
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    2. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    3. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    4. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2008. "Forecasting Macroeconomic Variables Using Diffusion Indexes in Short Samples with Structural Change," Working Papers 334, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    5. Leeb, Hannes & Pötscher, Benedikt M., 2003. "The Finite-Sample Distribution Of Post-Model-Selection Estimators And Uniform Versus Nonuniform Approximations," Econometric Theory, Cambridge University Press, vol. 19(1), pages 100-142, February.
    6. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    7. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2012. "Model selection when there are multiple breaks," Journal of Econometrics, Elsevier, vol. 169(2), pages 239-246.
    8. Castle, Jennifer L. & Hendry, David F., 2010. "A low-dimension portmanteau test for non-linearity," Journal of Econometrics, Elsevier, vol. 158(2), pages 231-245, October.
    9. Castle, Jennifer L. & Hendry, David F., 2014. "Model selection in under-specified equations facing breaks," Journal of Econometrics, Elsevier, vol. 178(P2), pages 286-293.
    10. Jennifer Castle & David Hendry, 2010. "Automatic Selection for Non-linear Models," Economics Series Working Papers 473, University of Oxford, Department of Economics.
    11. Espasa, Antoni & Mayo-Burgos, Iván, 2013. "Forecasting aggregates and disaggregates with common features," International Journal of Forecasting, Elsevier, vol. 29(4), pages 718-732.
    12. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    13. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    14. Søren Johansen & Bent Nielsen, 2008. "An analysis of the indicator saturation estimator as a robust regression," Discussion Papers 08-03, University of Copenhagen. Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Castle & David Hendry, 2012. "Forecasting by factors, by variables, or both?," Economics Series Working Papers 600, University of Oxford, Department of Economics.
    2. David F. Hendry & Felix Pretis, 2013. "Anthropogenic influences on atmospheric CO2," Chapters, in: Roger Fouquet (ed.),Handbook on Energy and Climate Change, chapter 12, pages 287-326, Edward Elgar Publishing.
    3. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2013. "Forecasting by factors, by variables, by both or neither?," Journal of Econometrics, Elsevier, vol. 177(2), pages 305-319.
    4. Jurgen A. Doornik & David F. Hendry & Steve Cook, 2015. "Statistical model selection with “Big Data”," Cogent Economics & Finance, Taylor & Francis Journals, vol. 3(1), pages 1045216-104, December.

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:75:y:2013:i:1:p:6-22. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.