IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v37y2016i1p3-29.html
   My bibliography  Save this article

Testing for Stationarity in Multivariate Locally Stationary Processes

Author

Listed:
  • Ruprecht Puchstein
  • Philip Preuß

Abstract

type="main" xml:id="jtsa12133-abs-0001"> In this article, we propose a nonparametric procedure for validating the assumption of stationarity in multivariate locally stationary time series models. We develop a bootstrap-assisted test based on a Kolmogorov–Smirnov-type statistic, which tracks the deviation of the time-varying spectral density from its best stationary approximation. In contrast to all other nonparametric approaches, which have been proposed in the literature so far, the test statistic does not depend on any regularization parameters like smoothing bandwidths or a window length, which is usually required in a segmentation of the data. We additionally show how our new procedure can be used to identify the components where non-stationarities occur and indicate possible extensions of this innovative approach. We conclude with an extensive simulation study, which shows finite-sample properties of the new method and contains a comparison with existing approaches.

Suggested Citation

  • Ruprecht Puchstein & Philip Preuß, 2016. "Testing for Stationarity in Multivariate Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 3-29, January.
  • Handle: RePEc:bla:jtsera:v:37:y:2016:i:1:p:3-29
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/jtsa.12133
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahlhaus, Rainer, 1988. "Empirical spectral processes and their applications to time series analysis," Stochastic Processes and their Applications, Elsevier, vol. 30(1), pages 69-83, November.
    2. Chen, Ying & Härdle, Wolfgang Karl & Pigorsch, Uta, 2010. "Localized Realized Volatility Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1376-1393.
    3. Kenji Sakiyama & Masanobu Taniguchi, 2003. "Testing Composite Hypotheses for Locally Stationary Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 483-504, July.
    4. Marios Sergides & Efstathios Paparoditis, 2009. "Frequency Domain Tests of Semiparametric Hypotheses for Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 800-821, December.
    5. Eichler, Michael, 2008. "Testing nonparametric and semiparametric hypotheses in vector stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 968-1009, May.
    6. Paparoditis, Efstathios, 2010. "Validating Stationarity Assumptions in Time Series Analysis by Rolling Local Periodograms," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 839-851.
    7. Dette, Holger & Preuß, Philip & Vetter, Mathias, 2011. "A Measure of Stationarity in Locally Stationary Processes With Applications to Testing," Journal of the American Statistical Association, American Statistical Association, vol. 106(495), pages 1113-1124.
    8. Chandler, Gabriel & Polonik, Wolfgang, 2006. "Discrimination of Locally Stationary Time Series Based on the Excess Mass Functional," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 240-253, March.
    9. Dahlhaus, Rainer, 2009. "Local inference for locally stationary time series based on the empirical spectral measure," Journal of Econometrics, Elsevier, vol. 151(2), pages 101-112, August.
    10. Hsiao-Yun Huang & Hernando Ombao & David S. Stoffer, 2004. "Discrimination and Classification of Nonstationary Time Series Using the SLEX Model," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 763-774, January.
    11. Sakiyama, Kenji & Taniguchi, Masanobu, 2004. "Discriminant analysis for locally stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 282-300, August.
    12. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent Classification of Nonstationary Time Series Using Stochastic Wavelet Representations," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 299-312.
    13. Yogesh Dwivedi & Suhasini Subba Rao, 2011. "A test for second‐order stationarity of a time series based on the discrete Fourier transform," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(1), pages 68-91, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabe Chandler & Wolfgang Polonik, 2017. "Residual Empirical Processes and Weighted Sums for Time-Varying Processes with Applications to Testing for Homoscedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 72-98, January.
    2. Tata Subba Rao & Granville Tunnicliffe Wilson & Soutir Bandyopadhyay & Carsten Jentsch & Suhasini Subba Rao, 2017. "A Spectral Domain Test for Stationarity of Spatio-Temporal Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(2), pages 326-351, March.
    3. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Preuss & Mathias Vetter & Holger Dette, 2013. "Testing Semiparametric Hypotheses in Locally Stationary Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 417-437, September.
    2. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    3. Antonis A. Michis & Guy P. Nason, 2017. "Case study: shipping trend estimation and prediction via multiscale variance stabilisation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(15), pages 2672-2684, November.
    4. Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
    5. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    6. Fryzlewicz, Piotr & Ombao, Hernando, 2009. "Consistent classification of non-stationary time series using stochastic wavelet representations," LSE Research Online Documents on Economics 25162, London School of Economics and Political Science, LSE Library.
    7. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.
    8. Efstathios Paparoditis & Philip Preuß, 2016. "On Local Power Properties of Frequency Domain-based Tests for Stationarity," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 664-682, September.
    9. Hossein Hassani & Mohammad Reza Yeganegi & Emmanuel Sirimal Silva, 2018. "A New Signal Processing Approach for Discrimination of EEG Recordings," Stats, MDPI, vol. 1(1), pages 1-14, November.
    10. Chen, Yen-Hung & Hsu, Nan-Jung, 2014. "A frequency domain test for detecting nonstationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 179-189.
    11. Casado, David & López Pintado, Sara, 2008. "A functional data based method for time series classification," DES - Working Papers. Statistics and Econometrics. WS ws087427, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    13. Embleton, Jonathan & Knight, Marina I. & Ombao, Hernando, 2022. "Wavelet testing for a replicate-effect within an ordered multiple-trial experiment," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    14. Kawka, Rafael, 2022. "Convergence of spectral density estimators in the locally stationary framework," Econometrics and Statistics, Elsevier, vol. 24(C), pages 94-115.
    15. Casini, Alessandro & Perron, Pierre, 2024. "Change-point analysis of time series with evolutionary spectra," Journal of Econometrics, Elsevier, vol. 242(2).
    16. Shibin Zhang & Xin M. Tu, 2022. "Tests for comparing time‐invariant and time‐varying spectra based on the Anderson–Darling statistic," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(3), pages 254-282, August.
    17. Zhelin Huang & Ngai Hang Chan, 2020. "Walsh Fourier Transform of Locally Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 312-340, March.
    18. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    19. Gabe Chandler & Wolfgang Polonik, 2017. "Residual Empirical Processes and Weighted Sums for Time-Varying Processes with Applications to Testing for Homoscedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 72-98, January.
    20. Maharaj, Elizabeth A. & Alonso, Andres M., 2007. "Discrimination of locally stationary time series using wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 879-895, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:37:y:2016:i:1:p:3-29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.