IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v58y2009i2p171-196.html
   My bibliography  Save this article

A multifaceted sensitivity analysis of the Slovenian public opinion survey data

Author

Listed:
  • Caroline Beunckens
  • Cristina Sotto
  • Geert Molenberghs
  • Geert Verbeke

Abstract

Many models to analyse incomplete data have been developed that allow the missing data to be missing not at random. Awareness has grown that such models are based on unverifiable assumptions, in the sense that they rest on the (incomplete) data only in part, but that inferences nevertheless depend on what the model predicts about the unobserved data, given the observed data. This explains why, nowadays, considerable work is being devoted to assess how sensitive models for incomplete data are to the particular model chosen, a family of models chosen and the effect of (a group of) influential subjects. For each of these categories, several proposals have been formulated, studied theoretically and/or by simulations, and applied to sets of data. It is, however, uncommon to explore various sensitivity analysis avenues simultaneously. We apply a collection of such tools, some after extension, to incomplete counts arising from cross-classified binary data from the so-called Slovenian public opinion survey. Thus for the first time bringing together a variety of sensitivity analysis tools on the same set of data, we can sketch a comprehensive sensitivity analysis picture. We show that missingness at random estimates of the proportion voting in favour of independence are insensitive to the precise choice of missingness at random model and close to the actual plebiscite results, whereas the missingness not at random models that are furthest from the plebiscite results are vulnerable to the influence of outlying cases. Our approach helps to illustrate the value of comprehensive sensitivity analysis. Ideas are formulated on the methodology's use beyond the data analysis that we consider. Copyright (c) 2009 Royal Statistical Society.

Suggested Citation

  • Caroline Beunckens & Cristina Sotto & Geert Molenberghs & Geert Verbeke, 2009. "A multifaceted sensitivity analysis of the Slovenian public opinion survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 171-196.
  • Handle: RePEc:bla:jorssc:v:58:y:2009:i:2:p:171-196
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-9876.2009.00647.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geert Molenberghs & Caroline Beunckens & Cristina Sotto & Michael G. Kenward, 2008. "Every missingness not at random model has a missingness at random counterpart with equal fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 371-388.
    2. Jansen, Ivy & Hens, Niel & Molenberghs, Geert & Aerts, Marc & Verbeke, Geert & Kenward, Michael G., 2006. "The nature of sensitivity in monotone missing not at random models," Computational Statistics & Data Analysis, Elsevier, vol. 50(3), pages 830-858, February.
    3. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    4. Geert Molenberghs & Michael G. Kenward & Els Goetghebeur, 2001. "Sensitivity analysis for incomplete contingency tables: the Slovenian plebiscite case," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 15-29.
    5. Geert Molenberghs & Herbert Thijs & Michael G. Kenward & Geert Verbeke, 2003. "Sensitivity Analysis of Continuous Incomplete Longitudinal Outcomes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(1), pages 112-135.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:58:y:2009:i:2:p:171-196. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.