IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v179y2016i2p427-452.html
   My bibliography  Save this article

Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M-quantile random-effects regression

Author

Listed:
  • Nikos Tzavidis
  • Nicola Salvati
  • Timo Schmid
  • Eirini Flouri
  • Emily Midouhas

Abstract

type="main" xml:id="rssa12126-abs-0001"> Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M-quantile random-effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.

Suggested Citation

  • Nikos Tzavidis & Nicola Salvati & Timo Schmid & Eirini Flouri & Emily Midouhas, 2016. "Longitudinal analysis of the strengths and difficulties questionnaire scores of the Millennium Cohort Study children in England using M-quantile random-effects regression," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 427-452, February.
  • Handle: RePEc:bla:jorssa:v:179:y:2016:i:2:p:427-452
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.2016.179.issue-2
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:179:y:2016:i:2:p:427-452. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.