IDEAS home Printed from
   My bibliography  Save this article

The probability of identification: applying ideas from forensic statistics to disclosure risk assessment


  • C. J. Skinner


The paper establishes a correspondence between statistical disclosure control and forensic statistics regarding their common use of the concept of 'probability of identification'. The paper then seeks to investigate what lessons for disclosure control can be learnt from the forensic identification literature. The main lesson that is considered is that disclosure risk assessment cannot, in general, ignore the search method that is employed by an intruder seeking to achieve disclosure. The effects of using several search methods are considered. Through consideration of the plausibility of assumptions and 'worst case' approaches, the paper suggests how the impact of search method can be handled. The paper focuses on foundations of disclosure risk assessment, providing some justification for some modelling assumptions underlying some existing record level measures of disclosure risk. The paper illustrates the effects of using various search methods in a numerical example based on microdata from a sample from the 2001 UK census. Copyright 2007 Royal Statistical Society.

Suggested Citation

  • C. J. Skinner, 2007. "The probability of identification: applying ideas from forensic statistics to disclosure risk assessment," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 195-212.
  • Handle: RePEc:bla:jorssa:v:170:y:2007:i:1:p:195-212

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Harvey, Andrew, 2001. "Testing in Unobserved Components Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 20(1), pages 1-19, January.
    2. De Jong, Piet & Boyle, Phelim P., 1983. "Monitoring mortality : A state-space approach," Journal of Econometrics, Elsevier, vol. 23(1), pages 131-146, September.
    3. Alexander Morton & Bärbel F. Finkenstädt, 2005. "Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 575-594.
    4. Linda Allen & Anthony Saunders, 2003. "A survey of cyclical effects in credit risk measurement model," BIS Working Papers 126, Bank for International Settlements.
    5. B. F. Finkenstädt & B. T. Grenfell, 2000. "Time series modelling of childhood diseases: a dynamical systems approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 49(2), pages 187-205.
    6. Gaudry, M., 1984. "Drag, un Modele de la Demande Routiere, des Accidents et de Leur Gravite, Applique au Quebec de 1956 a 1982," Cahiers de recherche 8432, Universite de Montreal, Departement de sciences economiques.
    7. Lel Li & Karl Kim, 2000. "Estimating driver crash risks based on the extended Bradley-Terry model: an induced exposure method," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(2), pages 227-240.
    8. Francesca Dominici & Aidan M.C. Dermott & Trevor J. Hastie, 2004. "Improved Semiparametric Time Series Models of Air Pollution and Mortality," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 938-948, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Prada, Sergio I & Gonzalez, Claudia & Borton, Joshua & Fernandes-Huessy, Johannes & Holden, Craig & Hair, Elizabeth & Mulcahy, Tim, 2011. "Avoiding disclosure of individually identifiable health information: a literature review," MPRA Paper 35463, University Library of Munich, Germany.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:170:y:2007:i:1:p:195-212. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.