IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v89y2021i3p635-656.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

A Two‐level GREG Estimator for Consistent Estimation in Household Surveys

Author

Listed:
  • Anne Konrad
  • Jan Pablo Burgard
  • Ralf Münnich

Abstract

Household surveys provide information on both person‐level and household‐level characteristics. To ensure consistent estimates between both levels, statistical offices often use integrated weights that are equal for all persons within a household and the household itself. However, these integrated weights ignore the individual patterns of the persons, and the heterogeneity within a household is no longer reflected. As an alternative to integrated weighting, we propose a two‐level generalised regression estimator that is capable of both ensuring consistent person and household estimates and allowing for different weights for persons within a household. A Monte Carlo simulation supports the superiority of our two‐level generalised regression estimator compared with integrated weighting.

Suggested Citation

  • Anne Konrad & Jan Pablo Burgard & Ralf Münnich, 2021. "A Two‐level GREG Estimator for Consistent Estimation in Household Surveys," International Statistical Review, International Statistical Institute, vol. 89(3), pages 635-656, December.
  • Handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:635-656
    DOI: 10.1111/insr.12460
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/insr.12460
    Download Restriction: no

    File URL: https://libkey.io/10.1111/insr.12460?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takis Merkouris, 2004. "Combining Independent Regression Estimators From Multiple Surveys," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 1131-1139, December.
    2. Jan Pablo Burgard & Jan-Philipp Kolb & Hariolf Merkle & Ralf Münnich, 2017. "Synthetic data for open and reproducible methodological research in social sciences and official statistics," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 11(3), pages 233-244, December.
    3. Nicola Branson & Martin Wittenberg, 2014. "Reweighting South African National Household Survey Data to Create a Consistent Series Over Time: A Cross-Entropy Estimation Approach," South African Journal of Economics, Economic Society of South Africa, vol. 82(1), pages 19-38, March.
    4. Martin Wittenberg, 2010. "An introduction to maximum entropy and minimum cross-entropy estimation using Stata," Stata Journal, StataCorp LP, vol. 10(3), pages 315-330, September.
    5. Yves Tillé, 1998. "Estimation in Surveys Using Conditional Inclusion Probabilities: Simple Random Sampling," International Statistical Review, International Statistical Institute, vol. 66(3), pages 303-322, December.
    6. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    7. Alessio Guandalini & Yves Tillé, 2017. "Design-based Estimators Calibrated on Estimated Totals from Multiple Surveys," International Statistical Review, International Statistical Institute, vol. 85(2), pages 250-269, August.
    8. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    9. Denis Devaud & Yves Tillé, 2019. "Rejoinder on: Deville and Särndal’s calibration: revisiting a 25-year-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1087-1091, December.
    10. D'Arrigo, Julia & Skinner, Chris J., 2010. "Linearization variance estimation for generalized raking estimators in the presence of nonresponse," LSE Research Online Documents on Economics 39120, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2020. "A Study of Discontinuity Effects in Regression Inference based on Web-Augmented Mixed Mode Surveys," Research Papers in Economics 2020-03, University of Trier, Department of Economics.
    2. Alessio Guandalini & Claudio Ceccarelli, 2022. "Impact measurement and dimension reduction of auxiliary variables in calibration estimator using the Shapley decomposition," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 759-784, October.
    3. Jan Pablo Burgard & Ralf Münnich & Martin Rupp, 2019. "A Generalized Calibration Approach Ensuring Coherent Estimates with Small Area Constraints," Research Papers in Economics 2019-10, University of Trier, Department of Economics.
    4. Amy Thornton & Martin Wittenberg, 2022. "Reweighting the OHS and GHS to improve data quality: Representativeness, household counts, and small households," South African Journal of Economics, Economic Society of South Africa, vol. 90(4), pages 513-534, December.
    5. Andrew Kerr & Martin Wittenberg, 2019. "Earnings and employment microdata in South Africa," WIDER Working Paper Series wp-2019-47, World Institute for Development Economic Research (UNU-WIDER).
    6. Reza C. Daniels, 2012. "A Framework for Investigating Micro Data Quality, with Application to South African Labour Market Household Surveys," SALDRU Working Papers 90, Southern Africa Labour and Development Research Unit, University of Cape Town.
    7. Jesse Tack & David Ubilava, 2013. "The effect of El Niño Southern Oscillation on U.S. corn production and downside risk," Climatic Change, Springer, vol. 121(4), pages 689-700, December.
    8. Edward J. Balistreri & Maryla Maliszewska & Israel Osorio-Rodarte & David G. Tarr & Hidemichi Yonezawa, 2016. "Poverty and Shared Prosperity Implications of Reducing Trade Costs Through Deep Integration in Eastern and Southern Africa," Working Papers 2016-07, Colorado School of Mines, Division of Economics and Business.
    9. Jan Pablo Burgard & Patricia Dörr & Ralf Münnich, 2020. "Monte-Carlo Simulation Studies in Survey Statistics – An Appraisal," Research Papers in Economics 2020-04, University of Trier, Department of Economics.
    10. Rulof Burger & Rachel Jafta & Dieter von Fintel, 2016. "Affirmative action policies and the evolution of post-apartheid South Africa's racial wage gap," WIDER Working Paper Series 066, World Institute for Development Economic Research (UNU-WIDER).
    11. Nicola Branson & Martin Wittenberg, 2014. "Reweighting South African National Household Survey Data to Create a Consistent Series Over Time: A Cross-Entropy Estimation Approach," South African Journal of Economics, Economic Society of South Africa, vol. 82(1), pages 19-38, March.
    12. Lakatos, Csilla & Maliszewska, Maryla & Osorio Rodarte, Israel & Go, Delfin S, 2016. "China’s Slowdown and Rebalancing: Potential Growth and Poverty Impacts on Sub-Saharan Africa," Conference papers 332730, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    13. Denis Devaud & Yves Tillé, 2019. "Deville and Särndal’s calibration: revisiting a 25-years-old successful optimization problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1033-1065, December.
    14. Jae Kwang Kim & Mingue Park, 2010. "Calibration Estimation in Survey Sampling," International Statistical Review, International Statistical Institute, vol. 78(1), pages 21-39, April.
    15. Neryvia Pillay Bell, 2020. "The impacts of unconditional cash transfers on schooling in adolescence and young adulthood Evidence from South Africa," Working Papers 10023, South African Reserve Bank.
    16. Christian Bruch, 2022. "Applying the rescaling bootstrap under imputation for a multistage sampling design," Computational Statistics, Springer, vol. 37(3), pages 1461-1494, July.
    17. Serena Merrino, 2020. "Measuring labour earnings inequality in post-apartheid South Africa," WIDER Working Paper Series wp-2020-32, World Institute for Development Economic Research (UNU-WIDER).
    18. Janusz Wywiał, 2003. "On conditional sampling strategies," Statistical Papers, Springer, vol. 44(3), pages 397-419, July.
    19. Balistreri, Edward J. & Maliszewska, Maryla & Osorio-Rodarte, Israel & Tarr, David G. & Yonezawa, Hidemichi, 2016. "Poverty and Shared Prosperity Implications of Deep Integration in Eastern and Southern Africa," Conference papers 332681, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. Chipperfield James O., 2016. "Discussion," Journal of Official Statistics, Sciendo, vol. 32(2), pages 287-289, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:89:y:2021:i:3:p:635-656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.