IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v24y2020i4p748-762.html
   My bibliography  Save this article

The potential for material circularity and independence in the U.S. steel sector

Author

Listed:
  • Daniel R. Cooper
  • Nicole A. Ryan
  • Kyle Syndergaard
  • Yongxian Zhu

Abstract

Achieving a U.S. circular economy would reduce environmental impacts and increase material independence. This article calculates maximum recycled contents (RCs) and recycling rates (RRs) in an independent U.S. steel sector, and estimates the potential to displace current imports with recycled scrap that is currently destined for landfill, hibernating stocks, or export (LHSE). A U.S. dynamic material flow analysis (1880–2100) is conducted to estimate annual steel consumption and scrap generation. The results are coupled with a linear optimization model that minimizes primary steel demand while satisfying the volumetric and compositional demands of new consumption. The compositional analysis examines only copper content because it is of greatest concern to recyclers. The best estimate is that the maximum independent RR is already constrained by copper contamination. Without interventions, this maximum RR will gradually decline throughout the century. The annual consumption to scrap availability ratio (C2SR) will decrease from around 1.4 today. Concurrently, the maximum RC rises but then plateaus below 75% as the RR falls. This highlights a conflict in the conditions for a circular economy: a C2SR approaching unity is a necessary condition for a high RC but leads to fewer opportunities for scrap contaminant dilution, which decreases the RR. Improved product design for recycling and deployment of scrap refining technologies will be needed to reach higher RCs. In 2017, the mass of U.S. scrap destined for LHSE exceeded direct steel imports. Domestic recycling of scrap exports alone could have displaced 36% of direct steel imports, reducing the U.S. deficit by $5.5 billion.

Suggested Citation

  • Daniel R. Cooper & Nicole A. Ryan & Kyle Syndergaard & Yongxian Zhu, 2020. "The potential for material circularity and independence in the U.S. steel sector," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 748-762, August.
  • Handle: RePEc:bla:inecol:v:24:y:2020:i:4:p:748-762
    DOI: 10.1111/jiec.12971
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.12971
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.12971?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Colin A. McMillan & Steven J. Skerlos & Gregory A. Keoleian, 2012. "Evaluation of the Metals Industry's Position on Recycling and its Implications for Environmental Emissions," Journal of Industrial Ecology, Yale University, vol. 16(3), pages 324-333, June.
    2. Willi Haas & Fridolin Krausmann & Dominik Wiedenhofer & Markus Heinz, 2015. "How Circular is the Global Economy?: An Assessment of Material Flows, Waste Production, and Recycling in the European Union and the World in 2005," Journal of Industrial Ecology, Yale University, vol. 19(5), pages 765-777, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anthony Halog & Sandra Anieke, 2021. "A Review of Circular Economy Studies in Developed Countries and Its Potential Adoption in Developing Countries," Circular Economy and Sustainability,, Springer.
    2. Liz Wachs & Colin McMillan & Gale Boyd & Matt Doolin, 2022. "Exploring New Ways to Classify Industries for Energy Analysis and Modeling," Working Papers 22-49, Center for Economic Studies, U.S. Census Bureau.
    3. Andersson, Fredrik N. G., 2021. "A Scenario Analysis of the Potential Effects of Decarbonization on the Profitability of the Energy-Intensive and Natural-Resource-Based Industries," Working Papers 2021:18, Lund University, Department of Economics.
    4. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    5. Jan Streeck & Quirin Dammerer & Dominik Wiedenhofer & Fridolin Krausmann, 2021. "The role of socio‐economic material stocks for natural resource use in the United States of America from 1870 to 2100," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1486-1502, December.
    6. Daryna Panasiuk & Ichiro Daigo & Takeo Hoshino & Hideo Hayashi & Eiji Yamasue & Duc Huy Tran & Benjamin Sprecher & Feng Shi & Volodymyr Shatokha, 2022. "International comparison of impurities mixing and accumulation in steel scrap," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1040-1050, June.
    7. Pothen, Frank & Hundt, Carolin, 2024. "European post-consumer steel scrap in 2050: A review of estimates and modeling assumptions," Jena Contributions to Economic Research Jahrgang 2024/1, Ernst-Abbe-Hochschule Jena – University of Applied Sciences, Department of Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Millar, Neal & McLaughlin, Eoin & Börger, Tobias, 2019. "The Circular Economy: Swings and Roundabouts?," Ecological Economics, Elsevier, vol. 158(C), pages 11-19.
    2. Wajad Ulfat & Ayesha Mohyuddin & Muhammad Amjad & Tonni Agustiono Kurniawan & Beenish Mujahid & Sohail Nadeem & Mohsin Javed & Adnan Amjad & Abdul Qayyum Ashraf & Mohd Hafiz Dzarfan Othman & Sadaful H, 2023. "Reuse of Buffing Dust-Laden Tanning Waste Hybridized with Poly- Styrene for Fabrication of Thermal Insulation Materials," Sustainability, MDPI, vol. 15(3), pages 1-12, January.
    3. Jacopo Zotti & Andrea Bigano, 2019. "Write circular economy, read economy’s circularity. How to avoid going in circles," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(2), pages 629-652, July.
    4. D. D’Amato, 2021. "Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy," Circular Economy and Sustainability,, Springer.
    5. Marco Bianchi & Carlos Tapia & Ikerne del Valle, 2020. "Monitoring domestic material consumption at lower territorial levels: A novel data downscaling method," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1074-1087, October.
    6. Anne P. M. Velenturf & Phil Purnell, 2017. "Resource Recovery from Waste: Restoring the Balance between Resource Scarcity and Waste Overload," Sustainability, MDPI, vol. 9(9), pages 1-17, September.
    7. Yana Us & Tetyana Pimonenko & Oleksii Lyulyov, 2023. "Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review," Energies, MDPI, vol. 16(5), pages 1-18, February.
    8. Michael Saidani & Alissa Kendall & Bernard Yannou & Yann Leroy & François Cluzel, 2019. "Closing the loop on platinum from catalytic converters: Contributions from material flow analysis and circularity indicators," Post-Print hal-02094798, HAL.
    9. Wendler, Tobias & Töbelmann, Daniel & Günther, Jutta, 2021. "Natural resources and technology - on the mitigating effect of green tech," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242416, Verein für Socialpolitik / German Economic Association.
    10. Colin M. Rose & Julia A. Stegemann, 2018. "From Waste Management to Component Management in the Construction Industry," Sustainability, MDPI, vol. 10(1), pages 1-21, January.
    11. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2017. "A stock-flow-fund ecological macroeconomic model," Ecological Economics, Elsevier, vol. 131(C), pages 191-207.
    12. Piciu Gabriela-Cornelia, 2021. "Ways To Accelerate The Circular Economy," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 5, pages 129-134, October.
    13. Dafermos, Yannis & Nikolaidi, Maria & Galanis, Giorgos, 2018. "Climate Change, Financial Stability and Monetary Policy," Ecological Economics, Elsevier, vol. 152(C), pages 219-234.
    14. Concepción Garcés-Ayerbe & Pilar Rivera-Torres & Inés Suárez-Perales & Dante I. Leyva-de la Hiz, 2019. "Is It Possible to Change from a Linear to a Circular Economy? An Overview of Opportunities and Barriers for European Small and Medium-Sized Enterprise Companies," IJERPH, MDPI, vol. 16(5), pages 1-15, March.
    15. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    16. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    17. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    18. Mihail Busu, 2019. "Adopting Circular Economy at the European Union Level and Its Impact on Economic Growth," Social Sciences, MDPI, vol. 8(5), pages 1-12, May.
    19. Georgios Lanaras-Mamounis & Anastasios Kipritsis & Thomas A. Tsalis & Konstantinos Ι. Vatalis & Ioannis E. Nikolaou, 2022. "A Framework for Assessing the Contribution of Firms to Circular Economy: a Triple-Level Approach," Circular Economy and Sustainability,, Springer.
    20. Lucas Becerra & Sebastián Carenzo & Paula Juarez, 2020. "When Circular Economy Meets Inclusive Development. Insights from Urban Recycling and Rural Water Access in Argentina," Sustainability, MDPI, vol. 12(23), pages 1-21, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:24:y:2020:i:4:p:748-762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.