IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p73-85.html
   My bibliography  Save this article

Dynamic logistic state space prediction model for clinical decision making

Author

Listed:
  • Jiakun Jiang
  • Wei Yang
  • Erin M. Schnellinger
  • Stephen E. Kimmel
  • Wensheng Guo

Abstract

Prediction modeling for clinical decision making is of great importance and needed to be updated frequently with the changes of patient population and clinical practice. Existing methods are either done in an ad hoc fashion, such as model recalibration or focus on studying the relationship between predictors and outcome and less so for the purpose of prediction. In this article, we propose a dynamic logistic state space model to continuously update the parameters whenever new information becomes available. The proposed model allows for both time‐varying and time‐invariant coefficients. The varying coefficients are modeled using smoothing splines to account for their smooth trends over time. The smoothing parameters are objectively chosen by maximum likelihood. The model is updated using batch data accumulated at prespecified time intervals, which allows for better approximation of the underlying binomial density function. In the simulation, we show that the new model has significantly higher prediction accuracy compared to existing methods. We apply the method to predict 1 year survival after lung transplantation using the United Network for Organ Sharing data.

Suggested Citation

  • Jiakun Jiang & Wei Yang & Erin M. Schnellinger & Stephen E. Kimmel & Wensheng Guo, 2023. "Dynamic logistic state space prediction model for clinical decision making," Biometrics, The International Biometric Society, vol. 79(1), pages 73-85, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:73-85
    DOI: 10.1111/biom.13593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13593
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ewout W Steyerberg & Karel G M Moons & Danielle A van der Windt & Jill A Hayden & Pablo Perel & Sara Schroter & Richard D Riley & Harry Hemingway & Douglas G Altman & for the PROGRESS Group, 2013. "Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research," PLOS Medicine, Public Library of Science, vol. 10(2), pages 1-9, February.
    2. Teus H. Kappen & Yvonne Vergouwe & Wilton A. van Klei & Leo van Wolfswinkel & Cor J. Kalkman & Karel G. M. Moons, 2012. "Adaptation of Clinical Prediction Models for Application in Local Settings," Medical Decision Making, , vol. 32(3), pages 1-10, May.
    3. Nicholas G. Polson & James G. Scott & Jesse Windle, 2013. "Bayesian Inference for Logistic Models Using Pólya--Gamma Latent Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1339-1349, December.
    4. Tyler H. McCormick & Adrian E. Raftery & David Madigan & Randall S. Burd, 2012. "Dynamic Logistic Regression and Dynamic Model Averaging for Binary Classification," Biometrics, The International Biometric Society, vol. 68(1), pages 23-30, March.
    5. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    6. Chantal Guihenneuc-Jouyaux & Sylvia Richardson & Ira M. Longini Jr., 2000. "Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline," Biometrics, The International Biometric Society, vol. 56(3), pages 733-741, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Catania, Leopoldo & Grassi, Stefano & Ravazzolo, Francesco, 2019. "Forecasting cryptocurrencies under model and parameter instability," International Journal of Forecasting, Elsevier, vol. 35(2), pages 485-501.
    2. Bakerman, Jordan & Pazdernik, Karl & Korkmaz, Gizem & Wilson, Alyson G., 2022. "Dynamic logistic regression and variable selection: Forecasting and contextualizing civil unrest," International Journal of Forecasting, Elsevier, vol. 38(2), pages 648-661.
    3. Anoek Castelein & Dennis Fok & Richard Paap, 2019. "Dynamics in clickthrough and conversion probabilities of paid search advertisements," Tinbergen Institute Discussion Papers 19-056/III, Tinbergen Institute.
    4. Stephana J Cherak & Andrea Soo & Kyla N Brown & E Wesley Ely & Henry T Stelfox & Kirsten M Fiest, 2020. "Development and validation of delirium prediction model for critically ill adults parameterized to ICU admission acuity," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-18, August.
    5. Todd J. Levy & Kevin Coppa & Jinxuan Cang & Douglas P. Barnaby & Marc D. Paradis & Stuart L. Cohen & Alex Makhnevich & David Klaveren & David M. Kent & Karina W. Davidson & Jamie S. Hirsch & Theodoros, 2022. "Development and validation of self-monitoring auto-updating prognostic models of survival for hospitalized COVID-19 patients," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    7. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    8. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    9. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    10. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    11. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    12. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    13. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    14. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    15. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    16. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    17. Niko Hauzenberger & Florian Huber, 2020. "Model instability in predictive exchange rate regressions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 168-186, March.
    18. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    19. Eric Heyer & Frédéric Reynès & Henri Sterdyniak, 2004. "Observable and unobservable variables in the theory of the equilibrium rate of unemployment, a comparison between France and the United States," Working Papers hal-01027420, HAL.
    20. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    21. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:73-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.