IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v79y2023i1p449-461.html
   My bibliography  Save this article

Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs

Author

Listed:
  • Daniel Mork
  • Ander Wilson

Abstract

Maternal exposure to environmental chemicals during pregnancy can alter birth and children's health outcomes. Research seeks to identify critical windows, time periods when exposures can change future health outcomes, and estimate the exposure–response relationship. Existing statistical approaches focus on estimation of the association between maternal exposure to a single environmental chemical observed at high temporal resolution (e.g., weekly throughout pregnancy) and children's health outcomes. Extending to multiple chemicals observed at high temporal resolution poses a dimensionality problem and statistical methods are lacking. We propose a regression tree–based model for mixtures of exposures observed at high temporal resolution. The proposed approach uses an additive ensemble of tree pairs that defines structured main effects and interactions between time‐resolved predictors and performs variable selection to select out of the model predictors not correlated with the outcome. In simulation, we show that the tree‐based approach performs better than existing methods for a single exposure and can accurately estimate critical windows in the exposure–response relation for mixtures. We apply our method to estimate the relationship between five exposures measured weekly throughout pregnancy and birth weight in a Denver, Colorado, birth cohort. We identified critical windows during which fine particulate matter, sulfur dioxide, and temperature are negatively associated with birth weight and an interaction between fine particulate matter and temperature. Software is made available in the R package dlmtree.

Suggested Citation

  • Daniel Mork & Ander Wilson, 2023. "Estimating perinatal critical windows of susceptibility to environmental mixtures via structured Bayesian regression tree pairs," Biometrics, The International Biometric Society, vol. 79(1), pages 449-461, March.
  • Handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:449-461
    DOI: 10.1111/biom.13568
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13568
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua Warren & Montserrat Fuentes & Amy Herring & Peter Langlois, 2012. "Spatial-Temporal Modeling of the Association between Air Pollution Exposure and Preterm Birth: Identifying Critical Windows of Exposure," Biometrics, The International Biometric Society, vol. 68(4), pages 1157-1167, December.
    2. Carlos M. Carvalho & Nicholas G. Polson & James G. Scott, 2010. "The horseshoe estimator for sparse signals," Biometrika, Biometrika Trust, vol. 97(2), pages 465-480.
    3. Yin‐Hsiu Chen & Bhramar Mukherjee & Veronica J. Berrocal, 2019. "Distributed lag interaction models with two pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(1), pages 79-97, January.
    4. Antonio Gasparrini & Fabian Scheipl & Ben Armstrong & Michael G. Kenward, 2017. "A penalized framework for distributed lag non-linear models," Biometrics, The International Biometric Society, vol. 73(3), pages 938-948, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuyan Wang & Akhgar Ghassabian & Bo Gu & Yelena Afanasyeva & Yiwei Li & Leonardo Trasande & Mengling Liu, 2023. "Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures," Biometrics, The International Biometric Society, vol. 79(3), pages 2619-2632, September.
    2. Ander Wilson & Brian J. Reich, 2014. "Confounder selection via penalized credible regions," Biometrics, The International Biometric Society, vol. 70(4), pages 852-861, December.
    3. Joshua L. Warren & Thomas J. Luben & Howard H. Chang, 2020. "A spatially varying distributed lag model with application to an air pollution and term low birth weight study," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 681-696, June.
    4. Joshua C. C. Chan & Gary Koop & Xuewen Yu, 2024. "Large Order-Invariant Bayesian VARs with Stochastic Volatility," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(2), pages 825-837, April.
    5. Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Discussion Papers in Economics 19/05, Division of Economics, School of Business, University of Leicester.
    6. David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
    7. Michael Pfarrhofer, 2024. "Forecasts with Bayesian vector autoregressions under real time conditions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 771-801, April.
    8. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    9. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    10. Bhattacharya, Anirban & Dunson, David B. & Pati, Debdeep & Pillai, Natesh S., 2016. "Sub-optimality of some continuous shrinkage priors," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3828-3842.
    11. Martin Feldkircher & Florian Huber & Gary Koop & Michael Pfarrhofer, 2022. "APPROXIMATE BAYESIAN INFERENCE AND FORECASTING IN HUGE‐DIMENSIONAL MULTICOUNTRY VARs," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 63(4), pages 1625-1658, November.
    12. Yanyi Song & Xiang Zhou & Jian Kang & Max T. Aung & Min Zhang & Wei Zhao & Belinda L. Needham & Sharon L. R. Kardia & Yongmei Liu & John D. Meeker & Jennifer A. Smith & Bhramar Mukherjee, 2021. "Bayesian sparse mediation analysis with targeted penalization of natural indirect effects," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1391-1412, November.
    13. Bitto, Angela & Frühwirth-Schnatter, Sylvia, 2019. "Achieving shrinkage in a time-varying parameter model framework," Journal of Econometrics, Elsevier, vol. 210(1), pages 75-97.
    14. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    15. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    16. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    17. Hauzenberger, Niko & Pfarrhofer, Michael & Stelzer, Anna, 2021. "On the effectiveness of the European Central Bank’s conventional and unconventional policies under uncertainty," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 822-845.
    18. Niko Hauzenberger & Florian Huber & Gary Koop, "undated". "Dynamic Shrinkage Priors for Large Time-varying Parameter Regressions using Scalable Markov Chain Monte Carlo Methods," Working Papers 2305, University of Strathclyde Business School, Department of Economics.
    19. Ley, Eduardo & Steel, Mark F.J., 2012. "Mixtures of g-priors for Bayesian model averaging with economic applications," Journal of Econometrics, Elsevier, vol. 171(2), pages 251-266.
    20. Gregor Kastner & Florian Huber, 2020. "Sparse Bayesian vector autoregressions in huge dimensions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1142-1165, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:1:p:449-461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.