IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v75y2019i1p235-244.html
   My bibliography  Save this article

Generalized linear models with linear constraints for microbiome compositional data

Author

Listed:
  • Jiarui Lu
  • Pixu Shi
  • Hongzhe Li

Abstract

Motivated by regression analysis for microbiome compositional data, this article considers generalized linear regression analysis with compositional covariates, where a group of linear constraints on regression coefficients are imposed to account for the compositional nature of the data and to achieve subcompositional coherence. A penalized likelihood estimation procedure using a generalized accelerated proximal gradient method is developed to efficiently estimate the regression coefficients. A de‐biased procedure is developed to obtain asymptotically unbiased and normally distributed estimates, which leads to valid confidence intervals of the regression coefficients. Simulations results show the correctness of the coverage probability of the confidence intervals and smaller variances of the estimates when the appropriate linear constraints are imposed. The methods are illustrated by a microbiome study in order to identify bacterial species that are associated with inflammatory bowel disease (IBD) and to predict IBD using fecal microbiome.

Suggested Citation

  • Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
  • Handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:235-244
    DOI: 10.1111/biom.12956
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12956
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    2. Jiahua Chen & Zehua Chen, 2008. "Extended Bayesian information criteria for model selection with large model spaces," Biometrika, Biometrika Trust, vol. 95(3), pages 759-771.
    3. Yuanpei Cao & Wei Lin & Hongzhe Li, 2018. "Two-sample tests of high-dimensional means for compositional data," Biometrika, Biometrika Trust, vol. 105(1), pages 115-132.
    4. Zachary D Kurtz & Christian L Müller & Emily R Miraldi & Dan R Littman & Martin J Blaser & Richard A Bonneau, 2015. "Sparse and Compositionally Robust Inference of Microbial Ecological Networks," PLOS Computational Biology, Public Library of Science, vol. 11(5), pages 1-25, May.
    5. Cun-Hui Zhang & Stephanie S. Zhang, 2014. "Confidence intervals for low dimensional parameters in high dimensional linear models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 217-242, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean M Devlin & Axel Martin & Irina Ostrovnaya, 2021. "Identifying prognostic pairwise relationships among bacterial species in microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-12, November.
    2. Lingjing Jiang & Niina Haiminen & Anna‐Paola Carrieri & Shi Huang & Yoshiki Vázquez‐Baeza & Laxmi Parida & Ho‐Cheol Kim & Austin D. Swafford & Rob Knight & Loki Natarajan, 2022. "Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 1155-1167, September.
    3. G. S. Monti & P. Filzmoser, 2022. "Robust logistic zero-sum regression for microbiome compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 301-324, June.
    4. Xu Lin & Hong-Mei Xiao & Hui-Min Liu & Wan-Qiang Lv & Jonathan Greenbaum & Rui Gong & Qiang Zhang & Yuan-Cheng Chen & Cheng Peng & Xue-Juan Xu & Dao-Yan Pan & Zhi Chen & Zhang-Fang Li & Rou Zhou & Xia, 2023. "Gut microbiota impacts bone via Bacteroides vulgatus-valeric acid-related pathways," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Arun Srinivasan & Lingzhou Xue & Xiang Zhan, 2021. "Compositional knockoff filter for high‐dimensional regression analysis of microbiome data," Biometrics, The International Biometric Society, vol. 77(3), pages 984-995, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    2. Rieser, Christopher & Filzmoser, Peter, 2023. "Extending compositional data analysis from a graph signal processing perspective," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    3. Haixiang Zhang & Jun Chen & Zhigang Li & Lei Liu, 2021. "Testing for Mediation Effect with Application to Human Microbiome Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 313-328, July.
    4. Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure," Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
    5. Lingjing Jiang & Niina Haiminen & Anna‐Paola Carrieri & Shi Huang & Yoshiki Vázquez‐Baeza & Laxmi Parida & Ho‐Cheol Kim & Austin D. Swafford & Rob Knight & Loki Natarajan, 2022. "Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 1155-1167, September.
    6. Huang, Yuan & Li, Changcheng & Li, Runze & Yang, Songshan, 2022. "An overview of tests on high-dimensional means," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Juan José Egozcue & Vera Pawlowsky-Glahn, 2019. "Compositional data: the sample space and its structure," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 599-638, September.
    8. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
    10. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    11. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    12. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    13. Frommlet, Florian & Ruhaltinger, Felix & Twaróg, Piotr & Bogdan, Małgorzata, 2012. "Modified versions of Bayesian Information Criterion for genome-wide association studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1038-1051.
    14. Alexandre Belloni & Victor Chernozhukov & Christian Hansen & Damian Kozbur, 2016. "Inference in High-Dimensional Panel Models With an Application to Gun Control," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 590-605, October.
    15. Duo Jiang & Thomas Sharpton & Yuan Jiang, 2021. "Microbial Interaction Network Estimation via Bias-Corrected Graphical Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 329-350, July.
    16. Zak-Szatkowska, Malgorzata & Bogdan, Malgorzata, 2011. "Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2908-2924, November.
    17. X. Jessie Jeng & Huimin Peng & Wenbin Lu, 2021. "Model Selection With Mixed Variables on the Lasso Path," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 170-184, May.
    18. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    19. Shengchun Kong & Zhuqing Yu & Xianyang Zhang & Guang Cheng, 2021. "High‐dimensional robust inference for Cox regression models using desparsified Lasso," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1068-1095, September.
    20. Xiaotong Shen & Wei Pan & Yunzhang Zhu & Hui Zhou, 2013. "On constrained and regularized high-dimensional regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 807-832, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:75:y:2019:i:1:p:235-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.