IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v205y2025ics0167947324001956.html
   My bibliography  Save this article

A debiasing phylogenetic tree-assisted regression model for microbiome data

Author

Listed:
  • Li, Yanhui
  • Zhao, Luqing
  • Wang, Jinjuan

Abstract

Identifying associations between microbial taxa and sample features has always been a worthwhile issue in microbiome analysis and various regression-based methods have been proposed. These methods can roughly be divided into two types. One considers sparsity characteristic of the microbiome data in the analysis, and the other considers phylogenetic tree to employ evolutionary information. However, none of these methods apply both sparsity and phylogenetic tree thoroughly in the regression analysis with theoretical guarantees. To fill this gap, a phylogenetic tree-assisted regression model accompanied by a Lasso-type penalty is proposed to detect feature-related microbial compositions. Specifically, based on the rational assumption that the smaller the phylogenetic distance between two microbial species, the closer their coefficients in the regression model, the phylogenetic tree is accommodated into the regression model by constructing a Laplacian-type penalty in the loss function. Both linear regression model for continuous outcome and generalized linear regression model for categorical outcome are analyzed in this framework. Additionally, debiasing algorithms are proposed for the coefficient estimators to give more precise evaluation. Extensive numerical simulations and real data analyses demonstrate the higher efficiency of the proposed method.

Suggested Citation

  • Li, Yanhui & Zhao, Luqing & Wang, Jinjuan, 2025. "A debiasing phylogenetic tree-assisted regression model for microbiome data," Computational Statistics & Data Analysis, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:csdana:v:205:y:2025:i:c:s0167947324001956
    DOI: 10.1016/j.csda.2024.108111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001956
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gen Li & Yan Li & Kun Chen, 2023. "It's all relative: Regression analysis with compositional predictors," Biometrics, The International Biometric Society, vol. 79(2), pages 1318-1329, June.
    2. Hansheng Wang & Runze Li & Chih-Ling Tsai, 2007. "Tuning parameter selectors for the smoothly clipped absolute deviation method," Biometrika, Biometrika Trust, vol. 94(3), pages 553-568.
    3. Junjie Qin & Yingrui Li & Zhiming Cai & Shenghui Li & Jianfeng Zhu & Fan Zhang & Suisha Liang & Wenwei Zhang & Yuanlin Guan & Dongqian Shen & Yangqing Peng & Dongya Zhang & Zhuye Jie & Wenxian Wu & Yo, 2012. "A metagenome-wide association study of gut microbiota in type 2 diabetes," Nature, Nature, vol. 490(7418), pages 55-60, October.
    4. Wei Lin & Pixu Shi & Rui Feng & Hongzhe Li, 2014. "Variable selection in regression with compositional covariates," Biometrika, Biometrika Trust, vol. 101(4), pages 785-797.
    5. Xiuli Wang & Mingqiu Wang, 2016. "Variable selection for high-dimensional generalized linear models with the weighted elastic-net procedure," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 796-809, April.
    6. Konstantin Shestopaloff & Mei Dong & Fan Gao & Wei Xu, 2021. "DCMD: Distance-based classification using mixture distributions on microbiome data," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-18, March.
    7. Jiarui Lu & Pixu Shi & Hongzhe Li, 2019. "Generalized linear models with linear constraints for microbiome compositional data," Biometrics, The International Biometric Society, vol. 75(1), pages 235-244, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingjing Jiang & Niina Haiminen & Anna‐Paola Carrieri & Shi Huang & Yoshiki Vázquez‐Baeza & Laxmi Parida & Ho‐Cheol Kim & Austin D. Swafford & Rob Knight & Loki Natarajan, 2022. "Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data," Biometrics, The International Biometric Society, vol. 78(3), pages 1155-1167, September.
    2. Yuan, Panxu & Jin, Changhan & Li, Gaorong, 2024. "FDR control for linear log-contrast models with high-dimensional compositional covariates," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    3. Jordi Saperas-Riera & Glòria Mateu-Figueras & Josep Antoni Martín-Fernández, 2024. "L p -Norm for Compositional Data: Exploring the CoDa L 1 -Norm in Penalised Regression," Mathematics, MDPI, vol. 12(9), pages 1-16, May.
    4. Sean M Devlin & Axel Martin & Irina Ostrovnaya, 2021. "Identifying prognostic pairwise relationships among bacterial species in microbiome studies," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-12, November.
    5. G. S. Monti & P. Filzmoser, 2022. "Robust logistic zero-sum regression for microbiome compositional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(2), pages 301-324, June.
    6. Arun Srinivasan & Lingzhou Xue & Xiang Zhan, 2021. "Compositional knockoff filter for high‐dimensional regression analysis of microbiome data," Biometrics, The International Biometric Society, vol. 77(3), pages 984-995, September.
    7. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    8. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    9. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    10. Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
    11. Jun Zhu & Hsin‐Cheng Huang & Perla E. Reyes, 2010. "On selection of spatial linear models for lattice data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 389-402, June.
    12. Ye, Mao & Lu, Zhao-Hua & Li, Yimei & Song, Xinyuan, 2019. "Finite mixture of varying coefficient model: Estimation and component selection," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 452-474.
    13. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    14. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
    15. Cai, Tingting & Li, Jianbo & Zhou, Qin & Yin, Songlou & Zhang, Riquan, 2024. "Subgroup detection based on partially linear additive individualized model with missing data in response," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    16. Xia Chen & Liyue Mao, 2020. "Penalized empirical likelihood for partially linear errors-in-variables models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 597-623, December.
    17. Fan, Guo-Liang & Liang, Han-Ying & Shen, Yu, 2016. "Penalized empirical likelihood for high-dimensional partially linear varying coefficient model with measurement errors," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 183-201.
    18. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    19. Tizheng Li & Xiaojuan Kang, 2022. "Variable selection of higher-order partially linear spatial autoregressive model with a diverging number of parameters," Statistical Papers, Springer, vol. 63(1), pages 243-285, February.
    20. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:205:y:2025:i:c:s0167947324001956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.