IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i2p488-497.html
   My bibliography  Save this article

A semiparametric likelihood†based method for regression analysis of mixed panel†count data

Author

Listed:
  • Liang Zhu
  • Ying Zhang
  • Yimei Li
  • Jianguo Sun
  • Leslie L. Robison

Abstract

Panel†count data arise when each study subject is observed only at discrete time points in a recurrent event study, and only the numbers of the event of interest between observation time points are recorded (Sun and Zhao, 2013). However, sometimes the exact number of events between some observation times is unknown and what we know is only whether the event of interest has occurred. In this article, we will refer this type of data to as mixed panel†count data and propose a likelihood†based semiparametric regression method for their analysis by using the nonhomogeneous Poisson process assumption. However, we establish the asymptotic properties of the resulting estimator by employing the empirical process theory and without using the Poisson assumption. Also, we conduct an extensive simulation study, which suggests that the proposed method works well in practice. Finally, the method is applied to a Childhood Cancer Survivor Study that motivated this study.

Suggested Citation

  • Liang Zhu & Ying Zhang & Yimei Li & Jianguo Sun & Leslie L. Robison, 2018. "A semiparametric likelihood†based method for regression analysis of mixed panel†count data," Biometrics, The International Biometric Society, vol. 74(2), pages 488-497, June.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:488-497
    DOI: 10.1111/biom.12774
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12774
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Y. Lin & L. J. Wei & I. Yang & Z. Ying, 2000. "Semiparametric regression for the mean and rate functions of recurrent events," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 711-730.
    2. Jianguo Sun, 2003. "A nonparametric test for panel count data," Biometrika, Biometrika Trust, vol. 90(1), pages 199-208, March.
    3. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    4. Liang Zhu & Hui Zhao & Jianguo Sun & Wendy Leisenring & Leslie L. Robison, 2015. "Regression analysis of mixed recurrent-event and panel-count data with additive rate models," Biometrics, The International Biometric Society, vol. 71(1), pages 71-79, March.
    5. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    6. J. Sun & L. J. Wei, 2000. "Regression analysis of panel count data with covariate‐dependent observation and censoring times," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 293-302.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yimei Li & Liang Zhu & Lei Liu & Leslie L. Robison, 2021. "Regression Analysis of Mixed Panel-Count Data with Application to Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 178-195, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 0. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-25.
    2. Jie Zhou & Haixiang Zhang & Liuquan Sun & Jianguo Sun, 2017. "Joint analysis of panel count data with an informative observation process and a dependent terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 560-584, October.
    3. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 0. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 0, pages 1-28.
    4. Zhao, Xingqiu & Tong, Xingwei, 2011. "Semiparametric regression analysis of panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 291-300, January.
    5. Zhao, Xingqiu & Tong, Xingwei & Sun, Jianguo, 2013. "Robust estimation for panel count data with informative observation times," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 33-40.
    6. Jianguo Sun & Xingwei Tong & Xin He, 2007. "Regression Analysis of Panel Count Data with Dependent Observation Times," Biometrics, The International Biometric Society, vol. 63(4), pages 1053-1059, December.
    7. Gang Cheng & Ying Zhang & Liqiang Lu, 2011. "Efficient algorithms for computing the non and semi-parametric maximum likelihood estimates with panel count data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(2), pages 567-579.
    8. Li, Yang & Zhao, Hui & Sun, Jianguo & Kim, KyungMann, 2014. "Nonparametric tests for panel count data with unequal observation processes," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 103-111.
    9. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    10. Zhang, Haixiang & Zhao, Hui & Sun, Jianguo & Wang, Dehui & Kim, KyungMann, 2013. "Regression analysis of multivariate panel count data with an informative observation process," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 71-80.
    11. Hangjin Jiang & Wen Su & Xingqiu Zhao, 2020. "Robust estimation for panel count data with informative observation times and censoring times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(1), pages 65-84, January.
    12. Li, Yang & He, Xin & Wang, Haiying & Zhang, Bin & Sun, Jianguo, 2015. "Semiparametric regression of multivariate panel count data with informative observation times," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 209-219.
    13. Xin He & Xuenan Feng & Xingwei Tong & Xingqiu Zhao, 2017. "Semiparametric partially linear varying coefficient models with panel count data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 439-466, July.
    14. Xingqiu Zhao & N. Balakrishnan & Jianguo Sun, 2011. "Nonparametric inference based on panel count data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 1-42, May.
    15. Yang Li & Xin He & Haiying Wang & Jianguo Sun, 2016. "Regression analysis of longitudinal data with correlated censoring and observation times," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(3), pages 343-362, July.
    16. Na Cai & Wenbin Lu & Hao Helen Zhang, 2012. "Time-Varying Latent Effect Model for Longitudinal Data with Informative Observation Times," Biometrics, The International Biometric Society, vol. 68(4), pages 1093-1102, December.
    17. Yimei Li & Liang Zhu & Lei Liu & Leslie L. Robison, 2021. "Regression Analysis of Mixed Panel-Count Data with Application to Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 178-195, April.
    18. Sundaram Rajeshwari & Ma Ling & Ghoshal Subhashis, 2017. "Median Analysis of Repeated Measures Associated with Recurrent Events in Presence of Terminal Event," The International Journal of Biostatistics, De Gruyter, vol. 13(1), pages 1-16, May.
    19. Dandan Liu & Douglas E. Schaubel & John D. Kalbfleisch, 2012. "Computationally Efficient Marginal Models for Clustered Recurrent Event Data," Biometrics, The International Biometric Society, vol. 68(2), pages 637-647, June.
    20. C.-Y. Huang & J. Qin & M.-C. Wang, 2010. "Semiparametric Analysis for Recurrent Event Data with Time-Dependent Covariates and Informative Censoring," Biometrics, The International Biometric Society, vol. 66(1), pages 39-49, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:2:p:488-497. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.