IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v63y2007i4p1135-1142.html
   My bibliography  Save this article

A Conservative Test for Multiple Comparison Based on Highly Correlated Test Statistics

Author

Listed:
  • Yoshiyuki Ninomiya
  • Hironori Fujisawa

Abstract

No abstract is available for this item.

Suggested Citation

  • Yoshiyuki Ninomiya & Hironori Fujisawa, 2007. "A Conservative Test for Multiple Comparison Based on Highly Correlated Test Statistics," Biometrics, The International Biometric Society, vol. 63(4), pages 1135-1142, December.
  • Handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1135-1142
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2007.00821.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Siegmund, 2004. "Model selection in irregular problems: Applications to mapping quantitative trait loci," Biometrika, Biometrika Trust, vol. 91(4), pages 785-800, December.
    2. Sandrine Dudoit & Mark van der Laan & Katherine Pollard, 2004. "Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates," U.C. Berkeley Division of Biostatistics Working Paper Series 1137, Berkeley Electronic Press.
    3. Dudoit Sandrine & van der Laan Mark J. & Pollard Katherine S., 2004. "Multiple Testing. Part I. Single-Step Procedures for Control of General Type I Error Rates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-71, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    2. Christina C. Bartenschlager & Michael Krapp, 2015. "Theorie und Methoden multipler statistischer Vergleiche," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 9(2), pages 107-129, November.
    3. Merrill Birkner & Sandra Sinisi & Mark van der Laan, 2004. "Multiple Testing and Data Adaptive Regression: An Application to HIV-1 Sequence Data," U.C. Berkeley Division of Biostatistics Working Paper Series 1161, Berkeley Electronic Press.
    4. Miecznikowski, Jeffrey C. & Gold, David & Shepherd, Lori & Liu, Song, 2011. "Deriving and comparing the distribution for the number of false positives in single step methods to control k-FWER," Statistics & Probability Letters, Elsevier, vol. 81(11), pages 1695-1705, November.
    5. Rubin Daniel & Dudoit Sandrine & van der Laan Mark, 2006. "A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-20, August.
    6. Miecznikowski Jeffrey C. & Gaile Daniel P., 2014. "A novel characterization of the generalized family wise error rate using empirical null distributions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 1-24, June.
    7. Schumi Jennifer & DiRienzo A. Gregory & DeGruttola Victor, 2008. "Testing for Associations with Missing High-Dimensional Categorical Covariates," The International Journal of Biostatistics, De Gruyter, vol. 4(1), pages 1-17, September.
    8. Joseph P. Romano & Michael Wolf, 2008. "Balanced Control of Generalized Error Rates," IEW - Working Papers 379, Institute for Empirical Research in Economics - University of Zurich.
    9. van der Laan Mark J. & Hubbard Alan E., 2006. "Quantile-Function Based Null Distribution in Resampling Based Multiple Testing," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-30, May.
    10. Pan, Jianmin & Chen, Jiahua, 2006. "Application of modified information criterion to multiple change point problems," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2221-2241, November.
    11. Yoshiyuki Ninomiya, 2015. "Change-point model selection via AIC," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 943-961, October.
    12. Nancy R. Zhang & David O. Siegmund, 2007. "A Modified Bayes Information Criterion with Applications to the Analysis of Comparative Genomic Hybridization Data," Biometrics, The International Biometric Society, vol. 63(1), pages 22-32, March.
    13. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    14. Chun Wang, 2021. "Using Penalized EM Algorithm to Infer Learning Trajectories in Latent Transition CDM," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 167-189, March.
    15. Satoshi Kuriki & Yoshiaki Harushima & Hironori Fujisawa & Nori Kurata, 2014. "Approximate tail probabilities of the maximum of a chi-square field on multi-dimensional lattice points and their applications to detection of loci interactions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 725-757, August.
    16. Christopher J. Bennett, 2009. "p-Value Adjustments for Asymptotic Control of the Generalized Familywise Error Rate," Vanderbilt University Department of Economics Working Papers 0905, Vanderbilt University Department of Economics.
    17. Baierl, Andreas & Futschik, Andreas & Bogdan, Malgorzata & Biecek, Przemyslaw, 2007. "Locating multiple interacting quantitative trait loci using robust model selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6423-6434, August.
    18. Ryoto Ozaki & Yoshiyuki Ninomiya, 2023. "Information criteria for detecting change‐points in the Cox proportional hazards model," Biometrics, The International Biometric Society, vol. 79(4), pages 3050-3065, December.
    19. Yang Yang & Victor DeGruttola, 2008. "Resampling-Based Multiple Testing Methods with Covariate Adjustment: Application to Investigation of Antiretroviral Drug Susceptibility," Biometrics, The International Biometric Society, vol. 64(2), pages 329-336, June.
    20. Jian Li & Fugee Tsung & Changliang Zou, 2013. "Directional change‐point detection for process control with multivariate categorical data," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(2), pages 160-173, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:63:y:2007:i:4:p:1135-1142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.