IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v57y2001i1p81-87.html
   My bibliography  Save this article

The Evaluation of Multiple Surrogate Endpoints

Author

Listed:
  • Jane Xu
  • Scott L. Zeger

Abstract

Summary. Surrogate endpoints are desirable because they typically result in smaller, faster efficacy studies compared with the ones using the clinical endpoints. Research on surrogate endpoints has received substantial attention lately, but most investigations have focused on the validity of using a single biomarker as a surrogate. Our paper studies whether the use of multiple markers can improve inferences about a treatment's effects on a clinical endpoint. We propose a joint model for a time to clinical event and for repeated measures over time on multiple biomarkers that are potential surrogates. This model extends the formulation of Xu and Zeger (2001, in press) and Fawcett and Thomas (1996, Statistics in Medicine15, 1663–1685). We propose two complementary measures of the relative benefit of multiple surrogates as opposed to a single one. Markov chain Monte Carlo is implemented to estimate model parameters. The methodology is illustrated with an analysis of data from a schizophrenia clinical trial.

Suggested Citation

  • Jane Xu & Scott L. Zeger, 2001. "The Evaluation of Multiple Surrogate Endpoints," Biometrics, The International Biometric Society, vol. 57(1), pages 81-87, March.
  • Handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:81-87
    DOI: 10.1111/j.0006-341X.2001.00081.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0006-341X.2001.00081.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0006-341X.2001.00081.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elizabeth R. Brown & Joseph G. Ibrahim, 2003. "Bayesian Approaches to Joint Cure-Rate and Longitudinal Models with Applications to Cancer Vaccine Trials," Biometrics, The International Biometric Society, vol. 59(3), pages 686-693, September.
    2. Jiafeng Chen & David M. Ritzwoller, 2021. "Semiparametric Estimation of Long-Term Treatment Effects," Papers 2107.14405, arXiv.org, revised Aug 2023.
    3. David B. Dunson & M. Watson & Jack A. Taylor, 2003. "Bayesian Latent Variable Models for Median Regression on Multiple Outcomes," Biometrics, The International Biometric Society, vol. 59(2), pages 296-304, June.
    4. Hongtu Zhu & Joseph G. Ibrahim & Yueh-Yun Chi & Niansheng Tang, 2012. "Bayesian Influence Measures for Joint Models for Longitudinal and Survival Data," Biometrics, The International Biometric Society, vol. 68(3), pages 954-964, September.
    5. Xuan Wang & Layla Parast & Larry Han & Lu Tian & Tianxi Cai, 2023. "Robust approach to combining multiple markers to improve surrogacy," Biometrics, The International Biometric Society, vol. 79(2), pages 788-798, June.
    6. Loucks, Eric B. & Juster, Robert P. & Pruessner, Jens C., 2008. "Neuroendocrine biomarkers, allostatic load, and the challenge of measurement: A commentary on Gersten," Social Science & Medicine, Elsevier, vol. 66(3), pages 525-530, February.
    7. Feng Gao & J. Miller & Chengjie Xiong & Julia Beiser & Mae Gordon, 2011. "A joint-modeling approach to assess the impact of biomarker variability on the risk of developing clinical outcome," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 20(1), pages 83-100, March.
    8. Wen Ye & Xihong Lin & Jeremy M. G. Taylor, 2008. "Semiparametric Modeling of Longitudinal Measurements and Time-to-Event Data–A Two-Stage Regression Calibration Approach," Biometrics, The International Biometric Society, vol. 64(4), pages 1238-1246, December.
    9. Angela Dobson & Robin Henderson, 2003. "Diagnostics for Joint Longitudinal and Dropout Time Modeling," Biometrics, The International Biometric Society, vol. 59(4), pages 741-751, December.
    10. Yueh-Yun Chi & Joseph G. Ibrahim, 2006. "Joint Models for Multivariate Longitudinal and Multivariate Survival Data," Biometrics, The International Biometric Society, vol. 62(2), pages 432-445, June.
    11. Tang, Nian-Sheng & Tang, An-Min & Pan, Dong-Dong, 2014. "Semiparametric Bayesian joint models of multivariate longitudinal and survival data," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 113-129.
    12. Chen, Ming-Hui & Ibrahim, Joseph G. & Sinha, Debajyoti, 2004. "A new joint model for longitudinal and survival data with a cure fraction," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 18-34, October.
    13. Jaeun Choi & Jianwen Cai & Donglin Zeng, 2017. "Penalized Likelihood Approach for Simultaneous Analysis of Survival Time and Binary Longitudinal Outcome," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 190-216, November.
    14. Lisa M. McCrink & Adele H. Marshall & Karen J. Cairns, 2013. "Advances in Joint Modelling: A Review of Recent Developments with Application to the Survival of End Stage Renal Disease Patients," International Statistical Review, International Statistical Institute, vol. 81(2), pages 249-269, August.
    15. Layla Parast & Tianxi Cai & Lu Tian, 2021. "Evaluating multiple surrogate markers with censored data," Biometrics, The International Biometric Society, vol. 77(4), pages 1315-1327, December.
    16. Jiawei Xu & Matthew A. Psioda & Joseph G. Ibrahim, 2023. "Bayesian Design of Clinical Trials Using Joint Cure Rate Models for Longitudinal and Time-to-Event Data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 213-233, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:57:y:2001:i:1:p:81-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.