Financial Twitter Sentiment on Bitcoin Return and High-Frequency Volatility
Author
Abstract
Suggested Citation
DOI: 10.34021/ve.2021.04.01(1)
Download full text from publisher
References listed on IDEAS
- Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Osman, Myriam Ben & Urom, Christian & Guesmi, Khaled & Benkraiem, Ramzi, 2024. "Economic sentiment and the cryptocurrency market in the post-COVID-19 era," International Review of Financial Analysis, Elsevier, vol. 91(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yamashiro, Hirochika & Nonaka, Hirofumi, 2021. "Estimation of processing time using machine learning and real factory data for optimization of parallel machine scheduling problem," Operations Research Perspectives, Elsevier, vol. 8(C).
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
- Yanbo Zhang & Mengkun Liang & Haiying Ou, 2024. "Prediction of Precious Metal Index Based on Ensemble Learning and SHAP Interpretable Method," Computational Economics, Springer;Society for Computational Economics, vol. 64(6), pages 3243-3278, December.
- Feng, Qianqian & Sun, Xiaolei & Hao, Jun & Li, Jianping, 2021. "Predictability dynamics of multifactor-influenced installed capacity: A perspective of country clustering," Energy, Elsevier, vol. 214(C).
- Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
- Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
- Hakan Pabuccu & Adrian Barbu, 2023. "Feature Selection with Annealing for Forecasting Financial Time Series," Papers 2303.02223, arXiv.org, revised Feb 2024.
- Sheng, Yankai & Qu, Yuanyu & Ma, Ding, 2024. "Stock price crash prediction based on multimodal data machine learning models," Finance Research Letters, Elsevier, vol. 62(PA).
- Ghallabi, Fahmi & Souissi, Bilel & Du, Anna Min & Ali, Shoaib, 2025. "ESG stock markets and clean energy prices prediction: Insights from advanced machine learning," International Review of Financial Analysis, Elsevier, vol. 97(C).
- Prof. Reepu & Prof.Bijesh Dhyani & Ms. Ayushi & Dr. Sudhi Sharma & Dr. Manish Kumar, 2022. "Predictive Modelling Of Select Cryptocurrencies And Identifying The Best Suitable Model - With Reference To Arima And Anns," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 6, pages 11-19, December.
- Xu Gong & Keqin Guan & Qiyang Chen, 2022. "The role of textual analysis in oil futures price forecasting based on machine learning approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(10), pages 1987-2017, October.
- Jinxin Wang & Chaoran Gao & Manman Wang & Yan Zhang, 2023. "Identification of Urban Functional Areas and Urban Spatial Structure Analysis by Fusing Multi-Source Data Features: A Case Study of Zhengzhou, China," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
- Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
- Walid Ben Omrane & Khaled Guesmi & Qi Qianru & Samir Saadi, 2023. "The high-frequency impact of macroeconomic news on jumps and co-jumps in the cryptocurrency markets," Annals of Operations Research, Springer, vol. 330(1), pages 177-209, November.
- Bouri, Elie & Christou, Christina & Gupta, Rangan, 2022.
"Forecasting returns of major cryptocurrencies: Evidence from regime-switching factor models,"
Finance Research Letters, Elsevier, vol. 49(C).
- Elie Bouri & Christina Christou & Rangan Gupta, 2022. "Forecasting Returns of Major Cryptocurrencies: Evidence from Regime-Switching Factor Models," Working Papers 202213, University of Pretoria, Department of Economics.
- Mingzhe Wei & Georgios Sermpinis & Charalampos Stasinakis, 2023. "Forecasting and trading Bitcoin with machine learning techniques and a hybrid volatility/sentiment leverage," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 852-871, July.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Yanxi Zhao & Dengpan Xiao & Huizi Bai & Jianzhao Tang & De Li Liu & Yongqing Qi & Yanjun Shen, 2022. "The Prediction of Wheat Yield in the North China Plain by Coupling Crop Model with Machine Learning Algorithms," Agriculture, MDPI, vol. 13(1), pages 1-19, December.
- Yan, Qin & Lu, Zhiying & Liu, Hong & He, Xingtang & Zhang, Xihai & Guo, Jianlin, 2024. "Short-term prediction of integrated energy load aggregation using a bi-directional simple recurrent unit network with feature-temporal attention mechanism ensemble learning model," Applied Energy, Elsevier, vol. 355(C).
More about this item
Keywords
Bitcoin; cryptocurrency; sentiment; Twitter; social media; volatility;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aid:journl:v:4:y:2021:i:1:p:7-18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aleksy Kwilinski (email available below). General contact details of provider: https://edirc.repec.org/data/akwilin.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.