IDEAS home Printed from https://ideas.repec.org/a/adp/jctbeb/v4y2017i2p12-14.html
   My bibliography  Save this article

Scanning Electron Microscopic Analysis of Glycated Histone H2B

Author

Listed:
  • Abdul Rouf Mir

    (Department of Biotechnology, University of Kashmir Jammu and Kashmir, India)

Abstract

Glycation is a widely reported modification of proteins. It leads to the compromise in the structural integrity of the proteins and have been widely implicated in pathological problems. While a large number of protein structures have been analysed for post glycation effects, no work reports changes in histone H2B upon non enzymatic glycation. The work presents the scanning electron micrographic study on the structure of histone H2B derived from calf thymus after its modification by an oxo-aldehyde named methylgyoxal. The results reveal a complete different look of H2B post modification under SEM, and the images point towards the amorphous aggregate adduct generation. While, many protein modifications may have little significance, the modifications of H2B can have severe impact on the gene expression and epigenetics as it is a part of core histone octamer. The work needs to be taken forward for further analysis.

Suggested Citation

  • Abdul Rouf Mir, 2017. "Scanning Electron Microscopic Analysis of Glycated Histone H2B," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 4(2), pages 12-14, May.
  • Handle: RePEc:adp:jctbeb:v:4:y:2017:i:2:p:12-14
    DOI: 10.19080/CTBEB.2017.04.555631
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ctbeb/pdf/CTBEB.MS.ID.555631.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ctbeb/CTBEB.MS.ID.555631.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/CTBEB.2017.04.555631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Monica Bucciantini & Elisa Giannoni & Fabrizio Chiti & Fabiana Baroni & Lucia Formigli & Jesús Zurdo & Niccolò Taddei & Giampietro Ramponi & Christopher M. Dobson & Massimo Stefani, 2002. "Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases," Nature, Nature, vol. 416(6880), pages 507-511, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mookyung Cheon & Iksoo Chang & Sandipan Mohanty & Leila M Luheshi & Christopher M Dobson & Michele Vendruscolo & Giorgio Favrin, 2007. "Structural Reorganisation and Potential Toxicity of Oligomeric Species Formed during the Assembly of Amyloid Fibrils," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-12, September.
    2. Victor Banerjee & Rajiv K Kar & Aritreyee Datta & Krupakar Parthasarathi & Subhrangsu Chatterjee & Kali P Das & Anirban Bhunia, 2013. "Use of a Small Peptide Fragment as an Inhibitor of Insulin Fibrillation Process: A Study by High and Low Resolution Spectroscopy," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-15, August.
    3. Qi Wang & Joshua L Johnson & Nathalie YR Agar & Jeffrey N Agar, 2008. "Protein Aggregation and Protein Instability Govern Familial Amyotrophic Lateral Sclerosis Patient Survival," PLOS Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    4. Aaron M Streets & Yannick Sourigues & Ron R Kopito & Ronald Melki & Stephen R Quake, 2013. "Simultaneous Measurement of Amyloid Fibril Formation by Dynamic Light Scattering and Fluorescence Reveals Complex Aggregation Kinetics," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-10, January.
    5. Etienne Maisonneuve & Adrien Ducret & Pierre Khoueiry & Sabrina Lignon & Sonia Longhi & Emmanuel Talla & Sam Dukan, 2009. "Rules Governing Selective Protein Carbonylation," PLOS ONE, Public Library of Science, vol. 4(10), pages 1-12, October.
    6. Noah S Bieler & Tuomas P J Knowles & Daan Frenkel & Robert Vácha, 2012. "Connecting Macroscopic Observables and Microscopic Assembly Events in Amyloid Formation Using Coarse Grained Simulations," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    7. Bente Vestergaard & Minna Groenning & Manfred Roessle & Jette S Kastrup & Marco van de Weert & James M Flink & Sven Frokjaer & Michael Gajhede & Dmitri I Svergun, 2007. "A Helical Structural Nucleus Is the Primary Elongating Unit of Insulin Amyloid Fibrils," PLOS Biology, Public Library of Science, vol. 5(5), pages 1-9, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:jctbeb:v:4:y:2017:i:2:p:12-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.