IDEAS home Printed from https://ideas.repec.org/a/adp/ijcsmb/v5y2018i1p24-28.html
   My bibliography  Save this article

HematologicalDevelopment of Enpp1 Inhibitors as a Strategy to Activate Stimulator of Interferon Genes (STING) in Cancers and Other Diseases

Author

Listed:
  • Manas Sharma
  • Trason Thode
  • Alexis Weston

    (Brophy College Preparatory, USA)

  • Mohan R Kaadige

    (Applied Cancer Research and Drug Discovery, Translational Genomics Research Institute, USA)

Abstract

Ecto-nucleotide pyrophosphatase/phosphodiesterase-1 (ENPP1/NPP1) is a membrane-bound nucleotide metabolizing enzyme that is implicated in a variety of physiological and pathological conditions. Recently, ENPP1 was discovered as the dominant 2’3’-cGAMP hydrolyzing enzyme. 2’3’-cGAMP is the endogenous STING agonist, generated from breakdown of cytosolic DNA by cGAS. Hydrolysis resistant 2’3’-cGAMP’s have been demonstrated to be potent activators of STING-dependent innate immunity and these are currently undergoing clinical trials in cancer. Here we discuss ENPP1 as a potential therapeutic target for activation of STING-dependent innate immune response.

Suggested Citation

  • Manas Sharma & Trason Thode & Alexis Weston & Mohan R Kaadige, 2018. "HematologicalDevelopment of Enpp1 Inhibitors as a Strategy to Activate Stimulator of Interferon Genes (STING) in Cancers and Other Diseases," International Journal of Cell Science & Molecular Biology, Juniper Publishers Inc., vol. 5(1), pages 24-28, September.
  • Handle: RePEc:adp:ijcsmb:v:5:y:2018:i:1:p:24-28
    DOI: 10.19080/IJCSMB.2018.04.555655
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/ijcsmb/pdf/IJCSMB.MS.ID.555655.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/ijcsmb/IJCSMB.MS.ID.555655.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/IJCSMB.2018.04.555655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dara L. Burdette & Kathryn M. Monroe & Katia Sotelo-Troha & Jeff S. Iwig & Barbara Eckert & Mamoru Hyodo & Yoshihiro Hayakawa & Russell E. Vance, 2011. "STING is a direct innate immune sensor of cyclic di-GMP," Nature, Nature, vol. 478(7370), pages 515-518, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Qiao-qiao He & Yu Huang & Longyu Nie & Sheng Ren & Gang Xu & Feiyan Deng & Zhikui Cheng & Qi Zuo & Lin Zhang & Huanhuan Cai & Qiming Wang & Fubing Wang & Hong Ren & Huan Yan & Ke Xu & Li Zhou & Mengji, 2023. "MAVS integrates glucose metabolism and RIG-I-like receptor signaling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Xia Li & Wenfang Yin & Junjie Desmond Lin & Yong Zhang & Quan Guo & Gerun Wang & Xiayu Chen & Binbin Cui & Mingfang Wang & Min Chen & Peng Li & Ya-Wen He & Wei Qian & Haibin Luo & Lian-Hui Zhang & Xue, 2023. "Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2′,3′-cyclic guanosine monophosphate," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    5. Rana Falahat & Anders Berglund & Patricio Perez-Villarroel & Ryan M. Putney & Imene Hamaidi & Sungjune Kim & Shari Pilon-Thomas & Glen N. Barber & James J. Mulé, 2023. "Epigenetic state determines the in vivo efficacy of STING agonist therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:ijcsmb:v:5:y:2018:i:1:p:24-28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.