IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-58378-1.html
   My bibliography  Save this article

Molecular basis of SLC19A1-mediated folate and cyclic dinucleotide transport

Author

Listed:
  • Qixiang Zhang

    (Beijing Institute of Technology)

  • Xuyuan Zhang

    (Chinese Academy of Sciences)

  • Kexin Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yalan Zhu

    (Beijing Institute of Technology)

  • Xiaohua Nie

    (Chinese Academy of Sciences)

  • Junxiao Ma

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Panpan Sun

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhaolong Li

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yina Gao

    (Chinese Academy of Sciences)

  • Songqing Liu

    (Chinese Academy of Sciences)

  • Ang Gao

    (Beijing Institute of Technology
    Shandong Academy of Medical Sciences)

  • Liguo Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Pu Gao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    Shandong Academy of Medical Sciences)

Abstract

The solute carrier protein SLC19A1 is crucial for transporting folate nutrients, antifolate chemotherapeutics, and more recently cyclic dinucleotides (CDNs) immune transmitters, influencing various physiological and pathological processes. While the inward-open state of human SLC19A1 (hSLC19A1) has been previously described, key aspects regarding its conformational dynamics, substrate selectivity, and precise mechanisms underlying CDNs transport remain elusive. Using an antibody-facilitated conformation screening strategy, we present cryo-electron microscopy structures of hSLC19A1 in its outward-open state with and without bound substrates, revealing detailed mechanisms of substrate recognition and conformational changes during transport. We identify both general and specific features for folate/antifolate recognition, including an SLC19A1-specific pocket for accommodating γ-carboxylate-modified antifolates. Intriguingly, CDNs bind as monomers within the canonical pocket of outward-open hSLC19A1, contrasting with dimeric binding in inward-open structures. Together with functional assays, these findings provide a framework for developing antifolate drugs and CDN-targeted therapies, advancing our understanding of SLC19A1’s physiological and therapeutic functions.

Suggested Citation

  • Qixiang Zhang & Xuyuan Zhang & Kexin Liu & Yalan Zhu & Xiaohua Nie & Junxiao Ma & Panpan Sun & Zhaolong Li & Yina Gao & Songqing Liu & Ang Gao & Liguo Zhang & Pu Gao, 2025. "Molecular basis of SLC19A1-mediated folate and cyclic dinucleotide transport," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58378-1
    DOI: 10.1038/s41467-025-58378-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-58378-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-58378-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joanne L. Parker & Justin C. Deme & Gabriel Kuteyi & Zhiyi Wu & Jiandong Huo & I. David Goldman & Raymond J. Owens & Philip C. Biggin & Susan M. Lea & Simon Newstead, 2021. "Structural basis of antifolate recognition and transport by PCFT," Nature, Nature, vol. 595(7865), pages 130-134, July.
    2. Dara L. Burdette & Kathryn M. Monroe & Katia Sotelo-Troha & Jeff S. Iwig & Barbara Eckert & Mamoru Hyodo & Yoshihiro Hayakawa & Russell E. Vance, 2011. "STING is a direct innate immune sensor of cyclic di-GMP," Nature, Nature, vol. 478(7370), pages 515-518, October.
    3. Guijun Shang & Conggang Zhang & Zhijian J. Chen & Xiao-chen Bai & Xuewu Zhang, 2019. "Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP," Nature, Nature, vol. 567(7748), pages 389-393, March.
    4. Larry H. Matherly & Zhanjun Hou, 2022. "Folate transporter offers clues for anticancer drugs," Nature, Nature, vol. 612(7938), pages 39-41, December.
    5. Nicholas J. Wright & Justin G. Fedor & Han Zhang & Pyeonghwa Jeong & Yang Suo & Jiho Yoo & Jiyong Hong & Wonpil Im & Seok-Yong Lee, 2022. "Methotrexate recognition by the human reduced folate carrier SLC19A1," Nature, Nature, vol. 609(7929), pages 1056-1062, September.
    6. Qixiang Zhang & Xuyuan Zhang & Yalan Zhu & Panpan Sun & Liwei Zhang & Junxiao Ma & Yong Zhang & Lingan Zeng & Xiaohua Nie & Yina Gao & Zhaolong Li & Songqing Liu & Jizhong Lou & Ang Gao & Liguo Zhang , 2022. "Recognition of cyclic dinucleotides and folates by human SLC19A1," Nature, Nature, vol. 612(7938), pages 170-176, December.
    7. Nan Wang & Shuo Zhang & Yafei Yuan & Hanwen Xu & Elisabeth Defossa & Hans Matter & Melissa Besenius & Volker Derdau & Matthias Dreyer & Nis Halland & Kaihui Hu He & Stefan Petry & Michael Podeschwa & , 2022. "Molecular basis for inhibiting human glucose transporters by exofacial inhibitors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anant Gharpure & Ariana Sulpizio & Johannes R. Loeffler & Monica L. Fernández-Quintero & Andy S. Tran & Luke L. Lairson & Andrew B. Ward, 2025. "Distinct oligomeric assemblies of STING induced by non-nucleotide agonists," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    2. Peipei Li & Zhini Zhu & Yong Wang & Xuyuan Zhang & Chuanhui Yang & Yalan Zhu & Zixuan Zhou & Yulin Chao & Yonghui Long & Yina Gao & Songqing Liu & Liguo Zhang & Pu Gao & Qianhui Qu, 2024. "Substrate transport and drug interaction of human thiamine transporters SLC19A2/A3," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    4. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    5. Bao-cun Zhang & Marlene F. Laursen & Lili Hu & Hossein Hazrati & Ryo Narita & Lea S. Jensen & Aida S. Hansen & Jinrong Huang & Yan Zhang & Xiangning Ding & Maimaitili Muyesier & Emil Nilsson & Agniesz, 2024. "Cholesterol-binding motifs in STING that control endoplasmic reticulum retention mediate anti-tumoral activity of cholesterol-lowering compounds," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Yi C. Zeng & Meghna Sobti & Ada Quinn & Nicola J. Smith & Simon H. J. Brown & Jamie I. Vandenberg & Renae M. Ryan & Megan L. O’Mara & Alastair G. Stewart, 2023. "Structural basis of promiscuous substrate transport by Organic Cation Transporter 1," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Nicholas J. Wright & Yutaka Matsuoka & Hyeri Park & Wei He & Caroline G. Webster & Kenta Furutani & Justin G. Fedor & Aidan McGinnis & Yiquan Zhao & Ouyang Chen & Sangsu Bang & Ping Fan & Ivan Spasoje, 2024. "Design of an equilibrative nucleoside transporter subtype 1 inhibitor for pain relief," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    8. Wei-Wei Luo & Zhen Tong & Pan Cao & Fu-Bing Wang & Ying Liu & Zhou-Qin Zheng & Su-Yun Wang & Shu Li & Yan-Yi Wang, 2022. "Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Huanyu Z. Li & Ashley C. W. Pike & Yung-Ning Chang & Dheeraj Prakaash & Zuzana Gelova & Josefina Stanka & Christophe Moreau & Hannah C. Scott & Frank Wunder & Gernot Wolf & Andreea Scacioc & Gavin McK, 2025. "Transport and inhibition of the sphingosine-1-phosphate exporter SPNS2," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    10. Alex J. Pollock & Shivam A. Zaver & Joshua J. Woodward, 2020. "A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    11. Rana Falahat & Anders Berglund & Patricio Perez-Villarroel & Ryan M. Putney & Imene Hamaidi & Sungjune Kim & Shari Pilon-Thomas & Glen N. Barber & James J. Mulé, 2023. "Epigenetic state determines the in vivo efficacy of STING agonist therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    13. Florian Gabriel & Lea Spriestersbach & Antonia Fuhrmann & Katharina E. J. Jungnickel & Siavash Mostafavi & Els Pardon & Jan Steyaert & Christian Löw, 2024. "Structural basis of thiamine transport and drug recognition by SLC19A3," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Qiao-qiao He & Yu Huang & Longyu Nie & Sheng Ren & Gang Xu & Feiyan Deng & Zhikui Cheng & Qi Zuo & Lin Zhang & Huanhuan Cai & Qiming Wang & Fubing Wang & Hong Ren & Huan Yan & Ke Xu & Li Zhou & Mengji, 2023. "MAVS integrates glucose metabolism and RIG-I-like receptor signaling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    15. Xia Li & Wenfang Yin & Junjie Desmond Lin & Yong Zhang & Quan Guo & Gerun Wang & Xiayu Chen & Binbin Cui & Mingfang Wang & Min Chen & Peng Li & Ya-Wen He & Wei Qian & Haibin Luo & Lian-Hui Zhang & Xue, 2023. "Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2′,3′-cyclic guanosine monophosphate," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    16. Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    17. Manas Sharma & Trason Thode & Alexis Weston & Mohan R Kaadige, 2018. "HematologicalDevelopment of Enpp1 Inhibitors as a Strategy to Activate Stimulator of Interferon Genes (STING) in Cancers and Other Diseases," International Journal of Cell Science & Molecular Biology, Juniper Publishers Inc., vol. 5(1), pages 24-28, September.
    18. Dohyun Im & Mika Jormakka & Narinobu Juge & Jun-ichi Kishikawa & Takayuki Kato & Yukihiko Sugita & Takeshi Noda & Tomoko Uemura & Yuki Shiimura & Takaaki Miyaji & Hidetsugu Asada & So Iwata, 2024. "Neurotransmitter recognition by human vesicular monoamine transporter 2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    19. Yongfang Lin & Jing Yang & Qili Yang & Sha Zeng & Jiayu Zhang & Yuanxiang Zhu & Yuxin Tong & Lin Li & Weiqi Tan & Dahua Chen & Qinmiao Sun, 2023. "PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-58378-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.