IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v6y2002i3p181-246.html
   My bibliography  Save this item

A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  2. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
  3. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
  4. Banapurmath, N.R. & Tewari, P.G., 2009. "Comparative performance studies of a 4-stroke CI engine operated on dual fuel mode with producer gas and Honge oil and its methyl ester (HOME) with and without carburetor," Renewable Energy, Elsevier, vol. 34(4), pages 1009-1015.
  5. Ansari, Khursheed B. & Kamal, Bushra & Beg, Sidra & Wakeel Khan, Md. Aquib & Khan, Mohd Shariq & Al Mesfer, Mohammed K. & Danish, Mohd., 2021. "Recent developments in investigating reaction chemistry and transport effects in biomass fast pyrolysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  6. Sam Van Holsbeeck & Mark Brown & Sanjeev Kumar Srivastava & Mohammad Reza Ghaffariyan, 2020. "A Review on the Potential of Forest Biomass for Bioenergy in Australia," Energies, MDPI, vol. 13(5), pages 1-19, March.
  7. Tan, Qinliang & Wang, Tingran & Zhang, Yimei & Miao, Xinyan & Zhu, Jun, 2017. "Nonlinear multi-objective optimization model for a biomass direct-fired power generation supply chain using a case study in China," Energy, Elsevier, vol. 139(C), pages 1066-1079.
  8. Basaglia, Marina & Favaro, Lorenzo & Torri, Cristian & Casella, Sergio, 2021. "Is pyrolysis bio-oil prone to microbial conversion into added-value products?," Renewable Energy, Elsevier, vol. 163(C), pages 783-791.
  9. Shemfe, Mobolaji B. & Whittaker, Carly & Gu, Sai & Fidalgo, Beatriz, 2016. "Comparative evaluation of GHG emissions from the use of Miscanthus for bio-hydrocarbon production via fast pyrolysis and bio-oil upgrading," Applied Energy, Elsevier, vol. 176(C), pages 22-33.
  10. Tsita, Katerina G. & Pilavachi, Petros A., 2013. "Evaluation of next generation biomass derived fuels for the transport sector," Energy Policy, Elsevier, vol. 62(C), pages 443-455.
  11. Kale, Rajesh V. & Pohekar, Sanjay D., 2012. "Electricity demand supply analysis: Current status and future prospects for Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3960-3966.
  12. Heena Panchasara & Nanjappa Ashwath, 2021. "Effects of Pyrolysis Bio-Oils on Fuel Atomisation—A Review," Energies, MDPI, vol. 14(4), pages 1-22, February.
  13. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H. & Ahmad-Yazid, A., 2012. "A review on electricity generation based on biomass residue in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5879-5889.
  14. Banapurmath, N.R. & Tewari, P.G. & Hosmath, R.S., 2008. "Experimental investigations of a four-stroke single cylinder direct injection diesel engine operated on dual fuel mode with producer gas as inducted fuel and Honge oil and its methyl ester (HOME) as i," Renewable Energy, Elsevier, vol. 33(9), pages 2007-2018.
  15. Dodic, Sinisa N. & Zekic, Vladislav N. & Rodic, Vesna O. & Tica, Nedeljko Lj. & Dodic, Jelena M. & Popov, Stevan D., 2011. "Analysis of energetic exploitation of straw in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1147-1151, February.
  16. Fiaschi, Daniele & Carta, Riccardo, 2007. "CO2 abatement by co-firing of natural gas and biomass-derived gas in a gas turbine," Energy, Elsevier, vol. 32(4), pages 549-567.
  17. Boukis, Ioannis & Vassilakos, Nikos & Karellas, Sotirios & Kakaras, Emmanuel, 2009. "Techno-economic analysis of the energy exploitation of biomass residues in Heraklion Prefecture--Crete," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 362-377, February.
  18. Do, Truong Xuan & Lim, Young-il & Yeo, Heejung & Lee, Uen-do & Choi, Young-tai & Song, Jae-hun, 2014. "Techno-economic analysis of power plant via circulating fluidized-bed gasification from woodchips," Energy, Elsevier, vol. 70(C), pages 547-560.
  19. Ascher, Simon & Sloan, William & Watson, Ian & You, Siming, 2022. "A comprehensive artificial neural network model for gasification process prediction," Applied Energy, Elsevier, vol. 320(C).
  20. Johannes Lehmann & John Gaunt & Marco Rondon, 2006. "Bio-char Sequestration in Terrestrial Ecosystems – A Review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(2), pages 395-419, March.
  21. Jerome A. Ramirez & Richard J. Brown & Thomas J. Rainey, 2015. "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels," Energies, MDPI, vol. 8(7), pages 1-30, July.
  22. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
  23. Mehrdad Massoudi & Ping Wang, 2013. "Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag," Energies, MDPI, vol. 6(2), pages 1-32, February.
  24. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
  25. Nakomcic-Smaragdakis, Branka & Cepic, Zoran & Dragutinovic, Natasa, 2016. "Analysis of solid biomass energy potential in Autonomous Province of Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 186-191.
  26. Meier, Dietrich & van de Beld, Bert & Bridgwater, Anthony V. & Elliott, Douglas C. & Oasmaa, Anja & Preto, Fernando, 2013. "State-of-the-art of fast pyrolysis in IEA bioenergy member countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 619-641.
  27. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
  28. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z., 2009. "Potential development of bioethanol production in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2722-2727, December.
  29. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  30. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
  31. Gómez, Antonio & Zubizarreta, Javier & Rodrigues, Marcos & Dopazo, César & Fueyo, Norberto, 2010. "An estimation of the energy potential of agro-industrial residues in Spain," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 972-984.
  32. Morato, Teresa & Vaezi, Mahdi & Kumar, Amit, 2019. "Developing a framework to optimally locate biomass collection points to improve the biomass-based energy facilities locating procedure – A case study for Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 183-199.
  33. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2010. "Sustainability considerations for electricity generation from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1419-1427, June.
  34. Harsono, Soni Sisbudi & Grundman, Philipp & Lau, Lek Hang & Hansen, Anja & Salleh, Mohammad Amran Mohd & Meyer-Aurich, Andreas & Idris, Azni & Ghazi, Tinia Idaty Mohd, 2013. "Energy balances, greenhouse gas emissions and economics of biochar production from palm oil empty fruit bunches," Resources, Conservation & Recycling, Elsevier, vol. 77(C), pages 108-115.
  35. Pedroso, Daniel Travieso & Machin, Einara Blanco & Proenza Pérez, Nestor & Braga, Lúcia Bollini & Silveira, José Luz, 2017. "Technical assessment of the Biomass Integrated Gasification/Gas Turbine Combined Cycle (BIG/GTCC) incorporation in the sugarcane industry," Renewable Energy, Elsevier, vol. 114(PB), pages 464-479.
  36. Kumar, Ashwani & Kumar, Kapil & Kaushik, Naresh & Sharma, Satyawati & Mishra, Saroj, 2010. "Renewable energy in India: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2434-2442, October.
  37. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
  38. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
  39. Morató, Teresa & Vaezi, Mahdi & Kumar, Amit, 2020. "Techno-economic assessment of biomass combustion technologies to generate electricity in South America: A case study for Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
  40. Cambero, Claudia & Hans Alexandre, Mariane & Sowlati, Taraneh, 2015. "Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 59-72.
  41. Robert M. Campbell & Nathaniel M. Anderson & Daren E. Daugaard & Helen T. Naughton, 2018. "Technoeconomic and Policy Drivers of Project Performance for Bioenergy Alternatives Using Biomass from Beetle-Killed Trees," Energies, MDPI, vol. 11(2), pages 1-20, January.
  42. Zeng, Jimin & Xiao, Rui & Yuan, Jun, 2021. "High-quality syngas production from biomass driven by chemical looping on a PY-GA coupled reactor," Energy, Elsevier, vol. 214(C).
  43. Dodić, Siniša N. & Vasiljević, Tamara Zelenović & Marić, Radenko M. & Kosanović, Aleksandar J. Radukin & Dodić, Jelena M. & Popov, Stevan D., 2012. "Possibilities of application of waste wood biomass as an energy source in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2355-2360.
  44. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
  45. Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
  46. Uslu, Ayla & Faaij, André P.C. & Bergman, P.C.A., 2008. "Pre-treatment technologies, and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast pyrolysis and pelletisation," Energy, Elsevier, vol. 33(8), pages 1206-1223.
  47. Young, Jesse D. & Anderson, Nathaniel M. & Naughton, Helen T. & Mullan, Katrina, 2018. "Economic and policy factors driving adoption of institutional woody biomass heating systems in the U.S," Energy Economics, Elsevier, vol. 69(C), pages 456-470.
  48. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  49. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
  50. Chiaramonti, David & Oasmaa, Anja & Solantausta, Yrjö, 2007. "Power generation using fast pyrolysis liquids from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1056-1086, August.
  51. Chen, Wei-Hsin & Farooq, Wasif & Shahbaz, Muhammad & Naqvi, Salman Raza & Ali, Imtiaz & Al-Ansari, Tareq & Saidina Amin, Nor Aishah, 2021. "Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process," Energy, Elsevier, vol. 226(C).
  52. Palumbo, Aaron W. & Sorli, Jeni C. & Weimer, Alan W., 2015. "High temperature thermochemical processing of biomass and methane for high conversion and selectivity to H2-enriched syngas," Applied Energy, Elsevier, vol. 157(C), pages 13-24.
  53. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
  54. Al-Kassir, A. & Gañán-Gómez, J. & Mohamad, A.A. & Cuerda-Correa, E.M., 2010. "A study of energy production from cork residues: Sawdust, sandpaper dust and triturated wood," Energy, Elsevier, vol. 35(1), pages 382-386.
  55. Bazmi, Aqeel Ahmed & Zahedi, Gholamreza & Hashim, Haslenda, 2011. "Progress and challenges in utilization of palm oil biomass as fuel for decentralized electricity generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 574-583, January.
  56. Woo, Heesung & Moroni, Martin & Park, Joowon & Taskhiri, Mohammad Sadegh & Turner, Paul, 2020. "Residues and bio-energy generation: A case study modelling value chain optimisation in Tasmania," Energy, Elsevier, vol. 196(C).
  57. Pantaleo, Antonio & Candelise, Chiara & Bauen, Ausilio & Shah, Nilay, 2014. "ESCO business models for biomass heating and CHP: Profitability of ESCO operations in Italy and key factors assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 237-253.
  58. V, Arun Kumar & Verma, Ashu & Talwar, Rajbans, 2020. "Optimal techno-economic sizing of a multi-generation microgrid system with reduced dependency on grid for critical health-care, educational and industrial facilities," Energy, Elsevier, vol. 208(C).
  59. McIlveen-Wright, David R. & Huang, Ye & Rezvani, Sina & Redpath, David & Anderson, Mark & Dave, Ashok & Hewitt, Neil J., 2013. "A technical and economic analysis of three large scale biomass combustion plants in the UK," Applied Energy, Elsevier, vol. 112(C), pages 396-404.
  60. Pighinelli, Anna L.M.T. & Schaffer, Mark A. & Boateng, Akwasi A., 2018. "Utilization of eucalyptus for electricity production in Brazil via fast pyrolysis: A techno-economic analysis," Renewable Energy, Elsevier, vol. 119(C), pages 590-597.
  61. Feng, Shanghuan & Cheng, Shuna & Yuan, Zhongshun & Leitch, Mathew & Xu, Chunbao (Charles), 2013. "Valorization of bark for chemicals and materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 560-578.
  62. Okolie, Jude A. & Nanda, Sonil & Dalai, Ajay K. & Berruti, Franco & Kozinski, Janusz A., 2020. "A review on subcritical and supercritical water gasification of biogenic, polymeric and petroleum wastes to hydrogen-rich synthesis gas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  63. Soltani, Saeed, 2019. "Modified exergy and exergoeconomic analyses of a biomass post fired hydrogen production combined cycle," Renewable Energy, Elsevier, vol. 135(C), pages 1466-1480.
  64. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
  65. González, Arnau & Riba, Jordi-Roger & Puig, Rita & Navarro, Pere, 2015. "Review of micro- and small-scale technologies to produce electricity and heat from Mediterranean forests׳ wood chips," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 143-155.
  66. Bilandzija, Nikola & Voca, Neven & Jelcic, Barbara & Jurisic, Vanja & Matin, Ana & Grubor, Mateja & Kricka, Tajana, 2018. "Evaluation of Croatian agricultural solid biomass energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 225-230.
  67. Bi, Rongshan & Zhang, Yan & Jiang, Xiao & Yang, Haixing & Yan, Kejia & Han, Min & Li, Wenhua & Zhong, Hua & Tan, Xinshun & Xia, Li & Sun, Xiaoyan & Xiang, Shuangguang, 2022. "Simulation and techno-economical analysis on the pyrolysis process of waste tire," Energy, Elsevier, vol. 260(C).
  68. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
  69. Dodic, Sinisa N. & Popov, Stevan D. & Dodic, Jelena M. & Rankovic, Jovana A. & Zavargo, Zoltan Z. & Golusin, Mirjana T., 2010. "An overview of biomass energy utilization in Vojvodina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 550-553, January.
  70. Li, Chunshan & Suzuki, Kenzi, 2010. "Resources, properties and utilization of tar," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 905-915.
  71. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
  72. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq, 2008. "An overview of biomass energy utilization in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1988-1996, September.
  73. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel & Brito, Paulo, 2017. "An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier," Renewable Energy, Elsevier, vol. 109(C), pages 248-261.
  74. Masum, Md Farhad Hossain & Dwivedi, Puneet & De La Torre, Rafael, 2021. "Assessing economic and environmental feasibility of wood-based electricity generation in South America: A case study from Colombia," Forest Policy and Economics, Elsevier, vol. 124(C).
  75. Kauffman, Nathan & Dumortier, Jerome & Hayes, Dermot J. & Brown, Robert C. & Laird, David, 2014. "Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity," ISU General Staff Papers 201404010700001488, Iowa State University, Department of Economics.
  76. Dodic, Sinisa N. & Zekic, Vladislav N. & Rodic, Vesna O. & Tica, Nedeljko Lj. & Dodic, Jelena M. & Popov, Stevan D., 2010. "Situation and perspectives of waste biomass application as energy source in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3171-3177, December.
  77. No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
  78. Yepes Maya, Diego Mauricio & Silva Lora, Electo Eduardo & Andrade, Rubenildo Vieira & Ratner, Albert & Martínez Angel, Juan Daniel, 2021. "Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach," Renewable Energy, Elsevier, vol. 177(C), pages 1014-1030.
  79. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Thapa, Sunil & Indrawan, Natarianto, 2018. "Scale-up of a downdraft gasifier system for commercial scale mobile power generation," Renewable Energy, Elsevier, vol. 118(C), pages 25-33.
  80. M. Mofijur & T.M.I. Mahlia & J. Logeswaran & M. Anwar & A.S. Silitonga & S.M. Ashrafur Rahman & A.H. Shamsuddin, 2019. "Potential of Rice Industry Biomass as a Renewable Energy Source," Energies, MDPI, vol. 12(21), pages 1-21, October.
  81. Morato, Teresa & Vaezi, Mahdi & Kumar, Amit, 2019. "Assessment of energy production potential from agricultural residues in Bolivia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 14-23.
  82. Yang, Y. & Brammer, J.G. & Wright, D.G. & Scott, J.A. & Serrano, C. & Bridgwater, A.V., 2017. "Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact," Applied Energy, Elsevier, vol. 191(C), pages 639-652.
  83. Dorota Janiszewska & Luiza Ossowska, 2020. "Biomass as the Most Popular Renevable Energy Source in EU," European Research Studies Journal, European Research Studies Journal, vol. 0(3), pages 315-326.
  84. Sun, Yanwei & Wang, Run & Liu, Jian & Xiao, Lishan & Lin, Yanjie & Kao, William, 2013. "Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China," Applied Energy, Elsevier, vol. 106(C), pages 391-406.
  85. Katarzyna Mydlarz & Marek Wieruszewski, 2022. "Economic, Technological as Well as Environmental and Social Aspects of Local Use of Wood By-Products Generated in Sawmills for Energy Purposes," Energies, MDPI, vol. 15(4), pages 1-13, February.
  86. Ansari, Khursheed B. & Gaikar, Vilas G., 2019. "Investigating production of hydrocarbon rich bio-oil from grassy biomass using vacuum pyrolysis coupled with online deoxygenation of volatile products over metallic iron," Renewable Energy, Elsevier, vol. 130(C), pages 305-318.
  87. Dominic Woolf & Johannes Lehmann & David R. Lee, 2016. "Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration," Nature Communications, Nature, vol. 7(1), pages 1-11, December.
  88. Klimantos, P. & Koukouzas, N. & Katsiadakis, A. & Kakaras, E., 2009. "Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment," Energy, Elsevier, vol. 34(5), pages 708-714.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.