IDEAS home Printed from https://ideas.repec.org/r/eee/intfor/v26yi4p700-711.html
   My bibliography  Save this item

Functional clustering and linear regression for peak load forecasting

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mohamed Chaouch & Naâmane Laïb & Djamal Louani, 2017. "Rate of uniform consistency for a class of mode regression on functional stationary ergodic data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(1), pages 19-47, March.
  2. Andrea Menapace & Simone Santopietro & Rudy Gargano & Maurizio Righetti, 2021. "Stochastic Generation of District Heat Load," Energies, MDPI, vol. 14(17), pages 1-17, August.
  3. Tsao, Yu-Chung & Chen, Yu-Kai & Chiu, Shih-Hao & Lu, Jye-Chyi & Vu, Thuy-Linh, 2022. "An innovative demand forecasting approach for the server industry," Technovation, Elsevier, vol. 110(C).
  4. Xiao, Xun & Mo, Huadong & Zhang, Yinan & Shan, Guangcun, 2022. "Meta-ANN – A dynamic artificial neural network refined by meta-learning for Short-Term Load Forecasting," Energy, Elsevier, vol. 246(C).
  5. Brenda López Cabrera & Franziska Schulz, 2016. "Time-Adaptive Probabilistic Forecasts of Electricity Spot Prices with Application to Risk Management," SFB 649 Discussion Papers SFB649DP2016-035, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  6. Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, vol. 88(11), pages 3807-3815.
  7. Oliver Schaer & Nikolaos Kourentzes & Robert Fildes, 2022. "Predictive competitive intelligence with prerelease online search traffic," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3823-3839, October.
  8. Kim, Taegu & Hong, Jungsik & Kang, Pilsung, 2015. "Box office forecasting using machine learning algorithms based on SNS data," International Journal of Forecasting, Elsevier, vol. 31(2), pages 364-390.
  9. Ahmad, Tanveer & Chen, Huanxin & Shair, Jan, 2018. "Water source heat pump energy demand prognosticate using disparate data-mining based approaches," Energy, Elsevier, vol. 152(C), pages 788-803.
  10. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
    • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
  11. Saxena, Harshit & Aponte, Omar & McConky, Katie T., 2019. "A hybrid machine learning model for forecasting a billing period’s peak electric load days," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1288-1303.
  12. Wang, Jianzhou & Jia, Ruiling & Zhao, Weigang & Wu, Jie & Dong, Yao, 2012. "Application of the largest Lyapunov exponent and non-linear fractal extrapolation algorithm to short-term load forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1277-1287.
  13. Huang, Ke & Yuan, Jianjuan & Zhou, Zhihua & Zheng, Xuejing, 2022. "Analysis and evaluation of heat source data of large-scale heating system based on descriptive data mining techniques," Energy, Elsevier, vol. 251(C).
  14. Yuan, Jianjuan & Zhou, Zhihua & Tang, Huajie & Wang, Chendong & Lu, Shilei & Han, Zhao & Zhang, Ji & Sheng, Ying, 2020. "Identification heat user behavior for improving the accuracy of heating load prediction model based on wireless on-off control system," Energy, Elsevier, vol. 199(C).
  15. Lintao Yang & Honggeng Yang, 2019. "Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-23, April.
  16. F. Marta L. Di Lascio & Andrea Menapace & Maurizio Righetti, 2020. "Joint and conditional dependence modelling of peak district heating demand and outdoor temperature: a copula-based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 373-395, June.
  17. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
  18. Vaghefi, A. & Jafari, M.A. & Bisse, Emmanuel & Lu, Y. & Brouwer, J., 2014. "Modeling and forecasting of cooling and electricity load demand," Applied Energy, Elsevier, vol. 136(C), pages 186-196.
  19. Singh, Priyanka & Dwivedi, Pragya & Kant, Vibhor, 2019. "A hybrid method based on neural network and improved environmental adaptation method using Controlled Gaussian Mutation with real parameter for short-term load forecasting," Energy, Elsevier, vol. 174(C), pages 460-477.
  20. Sigauke, C. & Chikobvu, D., 2011. "Prediction of daily peak electricity demand in South Africa using volatility forecasting models," Energy Economics, Elsevier, vol. 33(5), pages 882-888, September.
  21. Krzysztof Gajowniczek & Tomasz Ząbkowski, 2017. "Two-Stage Electricity Demand Modeling Using Machine Learning Algorithms," Energies, MDPI, vol. 10(10), pages 1-25, October.
  22. Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
  23. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
  24. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
  25. Mohamed Chaouch & Salah Khardani, 2015. "Randomly censored quantile regression estimation using functional stationary ergodic data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 65-87, March.
  26. Talebi, Behrang & Haghighat, Fariborz & Tuohy, Paul & Mirzaei, Parham A., 2018. "Validation of a community district energy system model using field measured data," Energy, Elsevier, vol. 144(C), pages 694-706.
  27. Li, Wei-Qin & Chang, Li, 2018. "A combination model with variable weight optimization for short-term electrical load forecasting," Energy, Elsevier, vol. 164(C), pages 575-593.
  28. Weide Li & Demeng Kong & Jinran Wu, 2017. "A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(5), pages 1-16, May.
  29. Haicheng Ling & Pierre-Yves Massé & Thibault Rihet & Frédéric Wurtz, 2023. "Realistic Nudging through ICT Pipelines to Help Improve Energy Self-Consumption for Management in Energy Communities," Energies, MDPI, vol. 16(13), pages 1-24, July.
  30. Michael Wood & Emanuele Ogliari & Alfredo Nespoli & Travis Simpkins & Sonia Leva, 2023. "Day Ahead Electric Load Forecast: A Comprehensive LSTM-EMD Methodology and Several Diverse Case Studies," Forecasting, MDPI, vol. 5(1), pages 1-18, March.
  31. Samuel Atuahene & Yukun Bao & Patricia Semwaah Gyan & Yao Yevenyo Ziggah, 2019. "Accurate Forecast Improvement Approach for Short Term Load Forecasting Using Hybrid Filter-Wrap Feature Selection," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 5(2), pages 37-49, January.
  32. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
  33. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
  34. Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
  35. Wang, Chi-hsiang & Grozev, George & Seo, Seongwon, 2012. "Decomposition and statistical analysis for regional electricity demand forecasting," Energy, Elsevier, vol. 41(1), pages 313-325.
  36. Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
  37. Bongiorno, Enea G. & Goia, Aldo, 2016. "Classification methods for Hilbert data based on surrogate density," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 204-222.
  38. Xiao, Liye & Wang, Jianzhou & Hou, Ru & Wu, Jie, 2015. "A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting," Energy, Elsevier, vol. 82(C), pages 524-549.
  39. Xian, Huafeng & Che, Jinxing, 2022. "Multi-space collaboration framework based optimal model selection for power load forecasting," Applied Energy, Elsevier, vol. 314(C).
  40. Carlos Barrera-Causil & Juan Carlos Correa & Andrew Zamecnik & Francisco Torres-Avilés & Fernando Marmolejo-Ramos, 2021. "An FDA-Based Approach for Clustering Elicited Expert Knowledge," Stats, MDPI, vol. 4(1), pages 1-21, March.
  41. Wang, Jianjun & Li, Li & Niu, Dongxiao & Tan, Zhongfu, 2012. "An annual load forecasting model based on support vector regression with differential evolution algorithm," Applied Energy, Elsevier, vol. 94(C), pages 65-70.
  42. Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
  43. Goia, Aldo, 2012. "A functional linear model for time series prediction with exogenous variables," Statistics & Probability Letters, Elsevier, vol. 82(5), pages 1005-1011.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.