IDEAS home Printed from https://ideas.repec.org/p/zbw/zewdip/21001.html
   My bibliography  Save this paper

Scientist's industry engagement and the research agenda: Evidence from Germany

Author

Listed:
  • Blandinieres, Florence
  • Pellens, Maikel

Abstract

We investigate the impact of industry engagement on the direction of academic science. We apply the framework of the research agenda to assess to which extent industry engagement shifts the costs and benefits of pursuing and adopting research topics. Our empirical analysis, based on a survey of German scientists, shows that scientists who engage more with industry are more likely to incorporate commercial considerations in selecting a research topic, and are less likely select a topic for its potential to contribute to ongoing scientific discussions. They are also more likely to consider industry an important sponsor to explore new research topics. In this way, too much emphasis on engagement might alter the direction of scientific progress towards industrially relevant research areas.

Suggested Citation

  • Blandinieres, Florence & Pellens, Maikel, 2021. "Scientist's industry engagement and the research agenda: Evidence from Germany," ZEW Discussion Papers 21-001, ZEW - Leibniz Centre for European Economic Research.
  • Handle: RePEc:zbw:zewdip:21001
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/229140/1/1745825568.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustavo Manso, 2011. "Motivating Innovation," Journal of Finance, American Finance Association, vol. 66(5), pages 1823-1860, October.
    2. Philippe Aghion & Mathias Dewatripont & Julian Kolev & Fiona Murray & Scott Stern, 2016. "Of Mice and Academics: Examining the Effect of Openness on Innovation," PSE-Ecole d'économie de Paris (Postprint) halshs-01496928, HAL.
    3. Expertenkommission Forschung und Innovation (EFI) (Ed.), 2012. "Zur Situation der Forschung an Deutschlands Hochschulen: Aktuelle empirische Befunde," Studien zum deutschen Innovationssystem 16-2012, Expertenkommission Forschung und Innovation (EFI) - Commission of Experts for Research and Innovation, Berlin.
    4. Heidi L. Williams, 2013. "Intellectual Property Rights and Innovation: Evidence from the Human Genome," Journal of Political Economy, University of Chicago Press, vol. 121(1), pages 1-27.
    5. Sampat, Bhaven N., 2012. "Mission-oriented biomedical research at the NIH," Research Policy, Elsevier, vol. 41(10), pages 1729-1741.
    6. Bhattacharya, Jay & Packalen, Mikko, 2011. "Opportunities and benefits as determinants of the direction of scientific research," Journal of Health Economics, Elsevier, vol. 30(4), pages 603-615, July.
    7. Stefan Hornbostel, 2001. "Third party funding of German universities. An indicator of research activity?," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(3), pages 523-537, March.
    8. Mansfield, Edwin, 1991. "Academic research and industrial innovation," Research Policy, Elsevier, vol. 20(1), pages 1-12, February.
    9. Pavitt, K, 2001. "Public Policies to Support Basic Research: What Can the Rest of the World Learn from US Theory and Practice? (And What They Should Not Learn)," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 10(3), pages 761-779, September.
    10. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    11. Fiona Murray & Philippe Aghion & Mathias Dewatripont & Julian Kolev & Scott Stern, 2016. "Of Mice and Academics: Examining the Effect of Openness on Innovation," American Economic Journal: Economic Policy, American Economic Association, vol. 8(1), pages 212-252, February.
    12. Dirk Czarnitzki & Christoph Grimpe & Andrew A. Toole, 2015. "Delay and secrecy: does industry sponsorship jeopardize disclosure of academic research?," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 24(1), pages 251-279.
    13. Behrens, Teresa R. & Gray, Denis O., 2001. "Unintended consequences of cooperative research: impact of industry sponsorship on climate for academic freedom and other graduate student outcome," Research Policy, Elsevier, vol. 30(2), pages 179-199, February.
    14. Giuliani, Elisa & Morrison, Andrea & Pietrobelli, Carlo & Rabellotti, Roberta, 2010. "Who are the researchers that are collaborating with industry? An analysis of the wine sectors in Chile, South Africa and Italy," Research Policy, Elsevier, vol. 39(6), pages 748-761, July.
    15. C. S. Peirce, 1967. "Note on the Theory of the Economy of Research," Operations Research, INFORMS, vol. 15(4), pages 643-648, August.
    16. Stefano Bianchini & Francesco Lissoni & Michele Pezzoni & Lorenzo Zirulia, 2016. "The economics of research, consulting, and teaching quality: theory and evidence from a technical university," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 25(7), pages 668-691, October.
    17. Hottenrott, Hanna & Lawson, Cornelia, 2013. "Fishing for Complementarities: Competitive Research Funding and Research Productivity," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201318, University of Turin.
    18. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    19. Carayol, Nicolas & Dalle, Jean-Michel, 2007. "Sequential problem choice and the reward system in Open Science," Structural Change and Economic Dynamics, Elsevier, vol. 18(2), pages 167-191, June.
    20. Christian Helmers & Henry G. Overman, 2017. "My Precious! The Location and Diffusion of Scientific Research: Evidence from the Synchrotron Diamond Light Source," Economic Journal, Royal Economic Society, vol. 127(604), pages 2006-2040, September.
    21. Banal-Estañol, Albert & Macho-Stadler, Inés & Pérez-Castrillo, David, 2019. "Evaluation in research funding agencies: Are structurally diverse teams biased against?," Research Policy, Elsevier, vol. 48(7), pages 1823-1840.
    22. Jeffrey L. Furman & Fiona Murray & Scott Stern, 2012. "Growing Stem Cells: The Impact of Federal Funding Policy on the U.S. Scientific Frontier," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 31(3), pages 661-705, June.
    23. Haeussler, Carolin & Colyvas, Jeannette A., 2011. "Breaking the Ivory Tower: Academic Entrepreneurship in the Life Sciences in UK and Germany," Research Policy, Elsevier, vol. 40(1), pages 41-54, February.
    24. Markus Perkmann & Kathryn Walsh, 2009. "The two faces of collaboration: impacts of university-industry relations on public research," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 18(6), pages 1033-1065, December.
    25. Wesley M. Cohen & Richard R. Nelson & John P. Walsh, 2003. "Links and Impacts: The Influence of Public Research on Industrial R&D," Chapters, in: Aldo Geuna & Ammon J. Salter & W. Edward Steinmueller (ed.), Science and Innovation, chapter 4, Edward Elgar Publishing.
    26. Rosenberg, Nathan, 1992. "Scientific instrumentation and university research," Research Policy, Elsevier, vol. 21(4), pages 381-390, August.
    27. Boardman, P. Craig & Corley, Elizabeth A., 2008. "University research centers and the composition of research collaborations," Research Policy, Elsevier, vol. 37(5), pages 900-913, June.
    28. Walsh, John P. & Cohen, Wesley M. & Cho, Charlene, 2007. "Where excludability matters: Material versus intellectual property in academic biomedical research," Research Policy, Elsevier, vol. 36(8), pages 1184-1203, October.
    29. D'Este, P. & Patel, P., 2007. "University-industry linkages in the UK: What are the factors underlying the variety of interactions with industry?," Research Policy, Elsevier, vol. 36(9), pages 1295-1313, November.
    30. Nathan Rosenberg & W. Edward Steinmueller, 2013. "Engineering knowledge," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 22(5), pages 1129-1158, October.
    31. Denisa Mindruta, 2013. "Value creation in university-firm research collaborations: A matching approach," Post-Print hal-00818682, HAL.
    32. Thijs Bol & Mathijs de Vaan & Arnout van de Rijt, 2018. "The Matthew effect in science funding," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 115(19), pages 4887-4890, May.
    33. Hanna Hottenrott & Cornelia Lawson, 2014. "Research grants, sources of ideas and the effects on academic research," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 23(2), pages 109-133, March.
    34. Bronwyn H. Hall & Albert N. Link & John T. Scott, 2003. "Universities as Research Partners," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 485-491, May.
    35. Bekkers, Rudi & Bodas Freitas, Isabel Maria, 2008. "Analysing knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Research Policy, Elsevier, vol. 37(10), pages 1837-1853, December.
    36. Pierre Azoulay & Waverly Ding & Toby Stuart, 2009. "The Impact Of Academic Patenting On The Rate, Quality And Direction Of (Public) Research Output," Journal of Industrial Economics, Wiley Blackwell, vol. 57(4), pages 637-676, December.
    37. Pierre Azoulay & Joshua S. Graff Zivin & Gustavo Manso, 2011. "Incentives and creativity: evidence from the academic life sciences," RAND Journal of Economics, RAND Corporation, vol. 42(3), pages 527-554, September.
    38. Pierre Azoulay & Danielle Li, 2020. "Scientific Grant Funding," NBER Chapters, in: Innovation and Public Policy, pages 117-150, National Bureau of Economic Research, Inc.
    39. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    40. Wesley M. Cohen & Henry Sauermann & Paula Stephan, 2020. "Not in the Job Description: The Commercial Activities of Academic Scientists and Engineers," Management Science, INFORMS, vol. 66(9), pages 4108-4117, September.
    41. deS. Price, Derek, 1984. "The science/technology relationship, the craft of experimental science, and policy for the improvement of high technology innovation," Research Policy, Elsevier, vol. 13(1), pages 3-20, February.
    42. Dirk Czarnitzki & Christoph Grimpe & Maikel Pellens, 2015. "Access to research inputs: open science versus the entrepreneurial university," The Journal of Technology Transfer, Springer, vol. 40(6), pages 1050-1063, December.
    43. Perkmann, Markus & Salandra, Rossella & Tartari, Valentina & McKelvey, Maureen & Hughes, Alan, 2021. "Academic engagement: A review of the literature 2011-2019," Research Policy, Elsevier, vol. 50(1).
    44. Stefano Bianchini & Francesco Lissoni & Michele Pezzoni & Lorenzo Zirulia, 2016. "The economics of research, consulting, and teaching quality: theory and evidence from a technical university," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 25(7), pages 668-691, October.
    45. Kyle Myers, 2020. "The Elasticity of Science," American Economic Journal: Applied Economics, American Economic Association, vol. 12(4), pages 103-134, October.
    46. Arthur Lewbel, 2012. "Using Heteroscedasticity to Identify and Estimate Mismeasured and Endogenous Regressor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 67-80.
    47. Albert Banal-Estañol & Inés Macho-Stadler & David Pérez-Castrillo, 2018. "Endogenous Matching in University-Industry Collaboration: Theory and Empirical Evidence from the United Kingdom," Management Science, INFORMS, vol. 64(4), pages 1591-1608, April.
    48. Carayol, Nicolas, 2003. "Objectives, agreements and matching in science-industry collaborations: reassembling the pieces of the puzzle," Research Policy, Elsevier, vol. 32(6), pages 887-908, June.
    49. Marie C. Thursby & Jerry Thursby & Swasti Gupta-Mukherjee, 2007. "Are There Real Effects of Licensing on Academic Research? A Life Cycle View," NBER Chapters, in: Academic Science and Entrepreneurship: Dual Engines of Growth, National Bureau of Economic Research, Inc.
    50. Gulbrandsen, Magnus & Smeby, Jens-Christian, 2005. "Industry funding and university professors' research performance," Research Policy, Elsevier, vol. 34(6), pages 932-950, August.
    51. Braun, Dietmar, 1998. "The role of funding agencies in the cognitive development of science," Research Policy, Elsevier, vol. 27(8), pages 807-821, December.
    52. Richard Jensen & Jerry Thursby & Marie C. Thursby, 2010. "University-Industry Spillovers, Government Funding, and Industrial Consulting," NBER Working Papers 15732, National Bureau of Economic Research, Inc.
    53. Christian Helmers & Henry G. Overman, 2017. "My Precious! The Location and Diffusion of Scientific Research: Evidence from the Synchrotron Diamond Light Source," Economic Journal, Royal Economic Society, vol. 127(604), pages 2006-2040, September.
    54. Jeffrey L. Furman & Scott Stern, 2011. "Climbing atop the Shoulders of Giants: The Impact of Institutions on Cumulative Research," American Economic Review, American Economic Association, vol. 101(5), pages 1933-1963, August.
    55. Albert Banal-Estañol & Mireia Jofre-Bonet & Cornelia Meissner, 2008. "Theimpact of industry collaboration on research: Evidence from engineering academics in the UK," Economics Working Papers 1190, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2010.
    56. Leonard P Freedman & Iain M Cockburn & Timothy S Simcoe, 2015. "The Economics of Reproducibility in Preclinical Research," PLOS Biology, Public Library of Science, vol. 13(6), pages 1-9, June.
    57. Danielle Li, 2017. "Expertise versus Bias in Evaluation: Evidence from the NIH," American Economic Journal: Applied Economics, American Economic Association, vol. 9(2), pages 60-92, April.
    58. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    59. Wang, Jian & Lee, You-Na & Walsh, John P., 2018. "Funding model and creativity in science: Competitive versus block funding and status contingency effects," Research Policy, Elsevier, vol. 47(6), pages 1070-1083.
    60. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    61. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    62. Aschhoff, Birgit & Grimpe, Christoph, 2014. "Contemporaneous peer effects, career age and the industry involvement of academics in biotechnology," Research Policy, Elsevier, vol. 43(2), pages 367-381.
    63. Louis, Karen Seashore & Jones, Lisa M. & Anderson, Melissa S. & Blumenthal, David & Campbell, Eric G., 2001. "Entrepreneurship, Secrecy, and Productivity: A Comparison of Clinical and Non-clinical Life Sciences Faculty," The Journal of Technology Transfer, Springer, vol. 26(3), pages 233-245, June.
    64. Lee Fleming & Olav Sorenson, 2004. "Science as a map in technological search," Strategic Management Journal, Wiley Blackwell, vol. 25(8‐9), pages 909-928, August.
    65. Lee, Yong S, 2000. "The Sustainability of University-Industry Research Collaboration: An Empirical Assessment," The Journal of Technology Transfer, Springer, vol. 25(2), pages 111-133, June.
    66. Kevin J. Boudreau & Eva C. Guinan & Karim R. Lakhani & Christoph Riedl, 2016. "Looking Across and Looking Beyond the Knowledge Frontier: Intellectual Distance, Novelty, and Resource Allocation in Science," Management Science, INFORMS, vol. 62(10), pages 2765-2783, October.
    67. Janet Bercovitz & Maryann Feldman, 2006. "Entpreprenerial Universities and Technology Transfer: A Conceptual Framework for Understanding Knowledge-Based Economic Development," The Journal of Technology Transfer, Springer, vol. 31(1), pages 175-188, January.
    68. Pavitt, Keith, 1998. "The social shaping of the national science base," Research Policy, Elsevier, vol. 27(8), pages 793-805, December.
    69. Rudi Bekkers & Bodas Freitas, 2008. "Analysing preferences for knowledge transfer channels between universities and industry: To what degree do sectors also matter?," Grenoble Ecole de Management (Post-Print) hal-01487467, HAL.
    70. Hottenrott, Hanna & Lawson, Cornelia, 2017. "Fishing for complementarities: Research grants and research productivity," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 1-38.
    71. Denisa Mindruta, 2013. "Value creation in university-firm research collaborations: A matching approach," Strategic Management Journal, Wiley Blackwell, vol. 34(6), pages 644-665, June.
    72. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    73. Lawson, Cornelia & Salter, Ammon & Hughes, Alan & Kitson, Michael, 2019. "Citizens of somewhere: Examining the geography of foreign and native-born academics’ engagement with external actors," Research Policy, Elsevier, vol. 48(3), pages 759-774.
    74. Yaqub, Ohid, 2017. "Testing regimes in clinical trials: Evidence from four polio vaccine trajectories," Research Policy, Elsevier, vol. 46(2), pages 475-484.
    75. D’Este, Pablo & Llopis, Oscar & Rentocchini, Francesco & Yegros, Alfredo, 2019. "The relationship between interdisciplinarity and distinct modes of university-industry interaction," Research Policy, Elsevier, vol. 48(9), pages 1-1.
    76. Abreu, Maria & Grinevich, Vadim, 2013. "The nature of academic entrepreneurship in the UK: Widening the focus on entrepreneurial activities," Research Policy, Elsevier, vol. 42(2), pages 408-422.
    77. Pierre Azoulay & Danielle Li, 2020. "Scientific Grant Funding," NBER Working Papers 26889, National Bureau of Economic Research, Inc.
    78. Salandra, Rossella, 2018. "Knowledge dissemination in clinical trials: Exploring influences of institutional support and type of innovation on selective reporting," Research Policy, Elsevier, vol. 47(7), pages 1215-1228.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perkmann, Markus & Salandra, Rossella & Tartari, Valentina & McKelvey, Maureen & Hughes, Alan, 2021. "Academic engagement: A review of the literature 2011-2019," Research Policy, Elsevier, vol. 50(1).
    2. Banal-Estañol, Albert & Jofre-Bonet, Mireia & Lawson, Cornelia, 2015. "The double-edged sword of industry collaboration: Evidence from engineering academics in the UK," Research Policy, Elsevier, vol. 44(6), pages 1160-1175.
    3. Quentin Plantec & Benjamin Cabanes & Pascal Le Masson & Benoit Weil, 2021. "Market-Pull Or Research Push? Effects Of Research Orientations On University-Industry Collaborative Ph.D. Projects' Performances," Post-Print halshs-03190142, HAL.
    4. Nasirov, Shukhrat & Joshi, Amol M., 2023. "Minding the communications gap: How can universities signal the availability and value of their scientific knowledge to commercial organizations?," Research Policy, Elsevier, vol. 52(9).
    5. Michaël Bikard & Keyvan Vakili & Florenta Teodoridis, 2019. "When Collaboration Bridges Institutions: The Impact of University–Industry Collaboration on Academic Productivity," Organization Science, INFORMS, vol. 30(2), pages 426-445, March.
    6. Alessandra Scandura & Simona Iammarino, 2022. "Academic engagement with industry: the role of research quality and experience," The Journal of Technology Transfer, Springer, vol. 47(4), pages 1000-1036, August.
    7. Roman Fudickar & Hanna Hottenrott & Cornelia Lawson, 2018. "What’s the price of academic consulting? Effects of public and private sector consulting on academic research," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 27(4), pages 699-722.
    8. Fudickar, Roman & Hottenrott, Hanna & Lawson, Cornelia, 2016. "What's the price of consulting? Effects of public and private sector consulting on academic research," DICE Discussion Papers 212, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    9. Quentin Plantec & Pascal Le Masson & Benoît Weil, 2022. "Nobel laurates and the role of the industry in the emergence of new scientific breakthroughs," Post-Print hal-03727378, HAL.
    10. Hottenrott, Hanna & Lawson, Cornelia, 2017. "Fishing for complementarities: Research grants and research productivity," International Journal of Industrial Organization, Elsevier, vol. 51(C), pages 1-38.
    11. Quentin Plantec & Pascal Le Masson & Benoit Weil, 2021. "Another way to get the Nobel Prize: the role of the industry in the emergence of new scientific breakthroughs," Post-Print halshs-03278662, HAL.
    12. Tartari, Valentina & Perkmann, Markus & Salter, Ammon, 2014. "In good company: The influence of peers on industry engagement by academic scientists," Research Policy, Elsevier, vol. 43(7), pages 1189-1203.
    13. Perkmann, Markus & Tartari, Valentina & McKelvey, Maureen & Autio, Erkko & Broström, Anders & D’Este, Pablo & Fini, Riccardo & Geuna, Aldo & Grimaldi, Rosa & Hughes, Alan & Krabel, Stefan & Kitson, Mi, 2013. "Academic engagement and commercialisation: A review of the literature on university–industry relations," Research Policy, Elsevier, vol. 42(2), pages 423-442.
    14. Joaquín M. Azagra-Caro & Carlos Benito-Amat & Ester Planells-Aleixandre, 2022. "Academic artists’ engagement and commercialisation," The Journal of Technology Transfer, Springer, vol. 47(4), pages 1273-1296, August.
    15. Victoria Galan-Muros & Todd Davey, 2019. "The UBC ecosystem: putting together a comprehensive framework for university-business cooperation," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1311-1346, August.
    16. Albert Banal-Estañol & Inés Macho-Stadler & David Pérez-Castillo, 2019. "Funding academic research: grant application, partnership, award, and output," Economics Working Papers 1658, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Kyle Myers & Wei Yang Tham, 2023. "Money, Time, and Grant Design," Papers 2312.06479, arXiv.org.
    18. Eunhee Sohn, 2021. "How Local Industry R&D Shapes Academic Research: Evidence from the Agricultural Biotechnology Revolution," Organization Science, INFORMS, vol. 32(3), pages 675-707, May.
    19. Véronique Schaeffer & Sıla Öcalan-Özel & Julien Pénin, 2020. "The complementarities between formal and informal channels of university–industry knowledge transfer: a longitudinal approach," The Journal of Technology Transfer, Springer, vol. 45(1), pages 31-55, February.
    20. Andrea Bonaccorsi & Luca Secondi & Enza Setteducati & Alessio Ancaiani, 2014. "Participation and commitment in third-party research funding: evidence from Italian Universities," The Journal of Technology Transfer, Springer, vol. 39(2), pages 169-198, April.

    More about this item

    Keywords

    Industry-science links; Industry engagement; research agenda;
    All these keywords.

    JEL classification:

    • I23 - Health, Education, and Welfare - - Education - - - Higher Education; Research Institutions
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:21001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.