Advanced Search
MyIDEAS: Login

The Evaluation Of Barrier Option Prices Under Stochastic Volatility

Contents:

Author Info

Abstract

This paperc onsiders the problem o fnumerically evaluating barrier option prices when the dynamics of the underlying are driven by stochastic volatility following the square root process of Heston (1993). We develop a method of lines approach to evaluate the price as well as the delta and gamma of the option. The method is able to effciently handle bothc ontinuously monitored and discretely monitored barrier options and can also handle barrier options with early exercise features. In the latter case, we can calculate the early exercise boundary of an American barrier option in both the continuously and discretely monitored cases.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp266.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 266.

as in new window
Length: 26
Date of creation: 01 Jan 2010
Date of revision:
Handle: RePEc:uts:rpaper:266

Contact details of provider:
Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/
More information through EDIRC

Related research

Keywords: barrier option; stochastic volatility; continuously monitored; discretely monitored; free boundary problem; method of lines; Monte Carlo simulation;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid tree-finite difference approach for the Heston model," Papers 1307.7178, arXiv.org, revised Oct 2013.
  2. Susanne Griebsch & Kay Pilz, 2012. "A Stochastic Approach to the Valuation of Barrier Options in Heston's Stochastic Volatility Model," Research Paper Series 309, Quantitative Finance Research Centre, University of Technology, Sydney.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:266. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.