Advanced Search
MyIDEAS: Login

Realized Correlation Tick-by-Tick

Contents:

Author Info

  • Fulvio Corsi

    ()

  • Francesco Audrino

    ()

Abstract

We propose the Heterogeneous Autoregressive (HAR) model for the estimation and prediction of realized correlations. We construct a realized correlation measure where both the volatilities and the covariances are computed from tick-by-tick data. As for the realized volatility, the presence of market microstructure can induce significant bias in standard realized covariance measure computed with artificially regularly spaced returns. Contrary to these standard approaches we analyse a simple and unbiased realized covariance estimator that does not resort to the construction of a regular grid, but directly and efficiently employs the raw tick-by-tick returns of the two series. Montecarlo simulations calibrated on realistic market microstructure conditions show that this simple tick-by-tick covariance possesses no bias and the smallest dispersion among the covariance estimators considered in the study. In an empirical analysis on S&P 500 and US bond data we find that realized correlations show significant regime changes in reaction to financial crises. Such regimes must be taken into account to get reliable estimates and forecasts.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www1.vwa.unisg.ch/RePEc/usg/dp2007/DP02-Au.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics, University of St. Gallen in its series University of St. Gallen Department of Economics working paper series 2007 with number 2007-02.

as in new window
Length: 32 pages
Date of creation: Jan 2007
Date of revision:
Handle: RePEc:usg:dp2007:2007-02

Contact details of provider:
Postal: Dufourstrasse 50, CH - 9000 St.Gallen
Phone: +41 71 224 23 25
Fax: +41 71 224 31 35
Email:
Web page: http://www.seps.unisg.ch/
More information through EDIRC

Related research

Keywords: High frequency data; Realized Correlation; Market Microstructure; Bias correction; HAR; Regimes;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
  2. Lubos Pastor & Robert F. Stambaugh, 2001. "Liquidity Risk and Expected Stock Returns," NBER Working Papers 8462, National Bureau of Economic Research, Inc.
  3. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
  4. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2001. "Modeling and Forecasting Realized Volatility," Center for Financial Institutions Working Papers 01-01, Wharton School Center for Financial Institutions, University of Pennsylvania.
  5. Bollerslev, Tim & Zhang, Benjamin Y. B., 2003. "Measuring and modeling systematic risk in factor pricing models using high-frequency data," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 533-558, December.
  6. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
  7. Ole E. Barndorff-Nielsen & Neil Shephard, 2002. "Estimating quadratic variation using realized variance," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 457-477.
  8. Scholes, Myron & Williams, Joseph, 1977. "Estimating betas from nonsynchronous data," Journal of Financial Economics, Elsevier, vol. 5(3), pages 309-327, December.
  9. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  10. Corsi, Fulvio & Kretschmer, Uta & Mittnik, Stefan & Pigorsch, Christian, 2005. "The volatility of realized volatility," CFS Working Paper Series 2005/33, Center for Financial Studies (CFS).
  11. Connolly, Robert & Stivers, Chris & Sun, Licheng, 2005. "Stock Market Uncertainty and the Stock-Bond Return Relation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 40(01), pages 161-194, March.
  12. Cohen, Kalman J. & Hawawini, Gabriel A. & Maier, Steven F. & Schwartz, Robert A. & Whitcomb, David K., 1983. "Friction in the trading process and the estimation of systematic risk," Journal of Financial Economics, Elsevier, vol. 12(2), pages 263-278, August.
  13. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  14. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 58-68, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Kim Christensen & Silja Kinnebrock & Mark Podolskij, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Post-Print hal-00732537, HAL.
  2. Diego Fresoli & Esther Ruiz, 2014. "The uncertainty of conditional returns, volatilities and correlations in DCC models," Statistics and Econometrics Working Papers ws140202, Universidad Carlos III, Departamento de Estadística y Econometría.
  3. Audrino, Francesco & Trojani, Fabio, 2011. "A General Multivariate Threshold GARCH Model With Dynamic Conditional Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 138-149.
  4. Audrino, Francesco, 2011. "Forecasting correlations during the late-2000s financial crisis: short-run component, long-run component, and structural breaks," Economics Working Paper Series 1112, University of St. Gallen, School of Economics and Political Science.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:usg:dp2007:2007-02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joerg Baumberger).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.