IDEAS home Printed from https://ideas.repec.org/p/unm/umagsb/2023005.html
   My bibliography  Save this paper

Bus service for cargo

Author

Listed:
  • Rajabighamchi, Farzaneh

    (Data Analytics and Digitalisation, RS: GSBE other - not theme-related research)

  • van Hoesel, Stan

    (RS: GSBE other - not theme-related research, RS: FSE DACS Mathematics Centre Maastricht, QE Operations research)

  • Defryn, Christof

    (RS: GSBE other - not theme-related research, RS: FSE DACS Mathematics Centre Maastricht, QE Operations research)

Abstract

This paper studies the routing of multiple commodities (shipments) through a network with the aim to minimize the total cost. To transport these commodities from their origin to their destination hub, a combination of different services can be used, including scheduled trucks (following a dedicated trajectory, similar to bus routes) and express delivery. Each commodity starts its itinerary at its origin hub and needs to arrive at its destination hub before its deadline. The following cost factors are considered in the model: a fixed cost as well as a distance-based travel cost for the scheduled truck services, a cost for express delivery between each pair of hubs based on the size of the commodity, and the inventory holding cost at each hub. We first define the problem as a mixed-integer linear program (MILP). To solve this MILP, we apply a branch-and-price algorithm that relies on column generation. In a second phase, we extend our model formulation to also deal with demand uncertainty (i.e., the size of each shipment varies) and present a two-stage, scenario-based stochastic model which we also solve using the branch-and-price algorithm. To generate the scenarios for the stochastic model, we apply Sample Average Approximation (SAA). Extensive computational experiments, including a sensitivity analysis are presented.

Suggested Citation

  • Rajabighamchi, Farzaneh & van Hoesel, Stan & Defryn, Christof, 2023. "Bus service for cargo," Research Memorandum 005, Maastricht University, Graduate School of Business and Economics (GSBE).
  • Handle: RePEc:unm:umagsb:2023005
    DOI: 10.26481/umagsb.2023005
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/136147321/RM23005.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umagsb.2023005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zujian & Qi, Mingyao & Cheng, Chun & Zhang, Canrong, 2019. "A hybrid algorithm for large-scale service network design considering a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 276(2), pages 483-494.
    2. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    3. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    4. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    5. Moradi, Siamak & Raith, Andrea & Ehrgott, Matthias, 2015. "A bi-objective column generation algorithm for the multi-commodity minimum cost flow problem," European Journal of Operational Research, Elsevier, vol. 244(2), pages 369-378.
    6. Teypaz, Nicolas & Schrenk, Susann & Cung, Van-Dat, 2010. "A decomposition scheme for large-scale Service Network Design with asset management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 156-170, January.
    7. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    2. Liu, Chuanju & Lin, Shaochong & Shen, Zuo-Jun Max & Zhang, Junlong, 2023. "Stochastic service network design: The value of fixed routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    3. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    4. Wang, Zujian & Qi, Mingyao & Cheng, Chun & Zhang, Canrong, 2019. "A hybrid algorithm for large-scale service network design considering a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 276(2), pages 483-494.
    5. Meng, Qiang & Hei, Xiuling & Wang, Shuaian & Mao, Haijun, 2015. "Carrying capacity procurement of rail and shipping services for automobile delivery with uncertain demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 38-54.
    6. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    7. Afshar, Abbas & Haghani, Ali, 2012. "Modeling integrated supply chain logistics in real-time large-scale disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 46(4), pages 327-338.
    8. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    9. Mohammad Marufuzzaman & Farjana Nur & Amy E. Bednar & Mark Cowan, 2020. "Enhancing Benders decomposition algorithm to solve a combat logistics problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 161-198, March.
    10. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    11. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    12. Mervat Chouman & Teodor Gabriel Crainic, 2015. "Cutting-Plane Matheuristic for Service Network Design with Design-Balanced Requirements," Transportation Science, INFORMS, vol. 49(1), pages 99-113, February.
    13. Smilowitz, Karen R. & Atamturk, Alper & Daganzo, Carlos F., 2002. "Deferred Item and Vehicle Routing within Integrated Networks," University of California Transportation Center, Working Papers qt0xn2d6kn, University of California Transportation Center.
    14. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    15. Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    16. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    17. Scherr, Yannick Oskar & Hewitt, Mike & Neumann Saavedra, Bruno Albert & Mattfeld, Dirk Christian, 2020. "Dynamic discretization discovery for the service network design problem with mixed autonomous fleets," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 164-195.
    18. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    19. H Gunnarsson & M Rönnqvist & D Carlsson, 2006. "A combined terminal location and ship routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(8), pages 928-938, August.
    20. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umagsb:2023005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.