IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v140y2020ics1366554520305962.html
   My bibliography  Save this article

Single-path service network design problem with resource constraints

Author

Listed:
  • Li, Xiangyong
  • Ding, Yi
  • Pan, Kai
  • Jiang, Dapei
  • Aneja, Y.P.

Abstract

We study a new service network design problem, where the number of available resources at each terminal is limited, and each commodity is delivered along a single path that prevents flow partition. Such a single-path constraint is motivated by currently emerging requirements in bulk transportation, express delivery, hazardous material transportation, etc. We model this problem with two mathematical formulations, i.e., node-arc and arc-cycle formulations, both of which lead to large-scale and computationally difficult mixed-integer programs. The node-arc formulation faces a significant computation burden. To that end, we develop a two-stage mathematical integer programming based heuristic for the arc-cycle formulation to produce high-quality solutions. In the first stage, a column generation procedure is executed to generate an optimal solution for the linear relaxation of the restricted master problem, and in the second stage, four heuristic strategies are designed to efficiently generate integer feasible solutions for the original problem. We conduct extensive experiments to verify the effectiveness of our proposed approach by comparing it with a commercial solver (CPLEX). We also examine the performance differences among four heuristic strategies, in terms of the frequency of finding integer feasible solutions and the quality of solutions.

Suggested Citation

  • Li, Xiangyong & Ding, Yi & Pan, Kai & Jiang, Dapei & Aneja, Y.P., 2020. "Single-path service network design problem with resource constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:transe:v:140:y:2020:i:c:s1366554520305962
    DOI: 10.1016/j.tre.2020.101945
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554520305962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2020.101945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cynthia Barnhart & Rina R. Schneur, 1996. "Air Network Design for Express Shipment Service," Operations Research, INFORMS, vol. 44(6), pages 852-863, December.
    2. Andersen, Jardar & Crainic, Teodor Gabriel & Christiansen, Marielle, 2009. "Service network design with management and coordination of multiple fleets," European Journal of Operational Research, Elsevier, vol. 193(2), pages 377-389, March.
    3. Mervat Chouman & Teodor Gabriel Crainic, 2015. "Cutting-Plane Matheuristic for Service Network Design with Design-Balanced Requirements," Transportation Science, INFORMS, vol. 49(1), pages 99-113, February.
    4. Teodor Gabriel Crainic & Mike Hewitt & Michel Toulouse & Duc Minh Vu, 2018. "Scheduled service network design with resource acquisition and management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 277-309, September.
    5. Lai, M. F. & Lo, Hong K., 2004. "Ferry service network design: optimal fleet size, routing, and scheduling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(4), pages 305-328, May.
    6. Li, Xiangyong & Lin, Shaochong & Tian, Peng & Aneja, Y.P., 2017. "Models and column generation approach for the resource-constrained minimum cost path problem with relays," Omega, Elsevier, vol. 66(PA), pages 79-90.
    7. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    8. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    9. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    10. Michael Berliner Pedersen & Teodor Gabriel Crainic & Oli B. G. Madsen, 2009. "Models and Tabu Search Metaheuristics for Service Network Design with Asset-Balance Requirements," Transportation Science, INFORMS, vol. 43(2), pages 158-177, May.
    11. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    12. Li, Xiangyong & Aneja, Y.P. & Huo, Jiazhen, 2012. "Using branch-and-price approach to solve the directed network design problem with relays," Omega, Elsevier, vol. 40(5), pages 672-679.
    13. Cynthia Barnhart & Christopher A. Hane & Pamela H. Vance, 2000. "Using Branch-and-Price-and-Cut to Solve Origin-Destination Integer Multicommodity Flow Problems," Operations Research, INFORMS, vol. 48(2), pages 318-326, April.
    14. Lo, Hong K. & An, Kun & Lin, Wei-hua, 2013. "Ferry service network design under demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 48-70.
    15. Cheng-Chieh (Frank) Chen & Paul Schonfeld, 2016. "A dispatching decision support system for countering delay propagation in intermodal logistics networks," Transportation Planning and Technology, Taylor & Francis Journals, vol. 39(3), pages 254-268, April.
    16. Teodor Gabriel Crainic & Mike Hewitt & Michel Toulouse & Duc Minh Vu, 2016. "Service Network Design with Resource Constraints," Transportation Science, INFORMS, vol. 50(4), pages 1380-1393, November.
    17. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    18. El Hassan Laaziz & Najiba Sbihi, 2019. "A service network design model for an intermodal rail-road freight forwarder," International Journal of Logistics Systems and Management, Inderscience Enterprises Ltd, vol. 32(3/4), pages 465-482.
    19. Vedat Verter & Bahar Y. Kara, 2008. "A Path-Based Approach for Hazmat Transport Network Design," Management Science, INFORMS, vol. 54(1), pages 29-40, January.
    20. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    21. Mike Hewitt & George L. Nemhauser & Martin W. P. Savelsbergh, 2010. "Combining Exact and Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 314-325, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    2. Eskandarzadeh, Saman & Fahimnia, Behnam, 2022. "Rest break policy comparison for heavy vehicle drivers in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    3. Liu, Chuanju & Lin, Shaochong & Shen, Zuo-Jun Max & Zhang, Junlong, 2023. "Stochastic service network design: The value of fixed routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    4. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    5. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    6. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    7. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiangyong & Wei, Kai & Guo, Zhaoxia & Wang, Wei & Aneja, Y.P., 2021. "An exact approach for the service network design problem with heterogeneous resource constraints," Omega, Elsevier, vol. 102(C).
    2. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    3. Hewitt, Mike & Crainic, Teodor Gabriel & Nowak, Maciek & Rei, Walter, 2019. "Scheduled service network design with resource acquisition and management under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 324-343.
    4. Zhang, X. & Liu, X., 2022. "A two-stage robust model for express service network design with surging demand," European Journal of Operational Research, Elsevier, vol. 299(1), pages 154-167.
    5. Crainic, Teodor Gabriel & Gendron, Bernard & Akhavan Kazemzadeh, Mohammad Rahim, 2022. "A taxonomy of multilayer network design and a survey of transportation and telecommunication applications," European Journal of Operational Research, Elsevier, vol. 303(1), pages 1-13.
    6. Teodor Gabriel Crainic & Mike Hewitt & Michel Toulouse & Duc Minh Vu, 2018. "Scheduled service network design with resource acquisition and management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 277-309, September.
    7. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    8. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    9. Wang, Zujian & Qi, Mingyao & Cheng, Chun & Zhang, Canrong, 2019. "A hybrid algorithm for large-scale service network design considering a heterogeneous fleet," European Journal of Operational Research, Elsevier, vol. 276(2), pages 483-494.
    10. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    11. Naoto Katayama, 2020. "MIP neighborhood search heuristics for a service network design problem with design-balanced requirements," Journal of Heuristics, Springer, vol. 26(4), pages 475-502, August.
    12. Jardar Andersen & Marielle Christiansen & Teodor Gabriel Crainic & Roar Grønhaug, 2011. "Branch and Price for Service Network Design with Asset Management Constraints," Transportation Science, INFORMS, vol. 45(1), pages 33-49, February.
    13. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    14. Mervat Chouman & Teodor Gabriel Crainic, 2015. "Cutting-Plane Matheuristic for Service Network Design with Design-Balanced Requirements," Transportation Science, INFORMS, vol. 49(1), pages 99-113, February.
    15. Dayarian, Iman & Rocco, Adolfo & Erera, Alan & Savelsbergh, Martin, 2022. "Operations design for high-velocity intra-city package service," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 150-168.
    16. Liu, Chuanju & Zhang, Junlong & Lin, Shaochong & Shen, Zuo-Jun Max, 2023. "Service network design with consistent multiple trips," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    17. Xudong Diao & Ai Gao & Xin Jin & Hui Chen, 2022. "A Layer-Based Relaxation Approach for Service Network Design," Sustainability, MDPI, vol. 14(20), pages 1-13, October.
    18. Naga V. C. Gudapati & Enrico Malaguti & Michele Monaci, 2022. "Network Design with Service Requirements: Scaling-up the Size of Solvable Problems," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2571-2582, September.
    19. Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
    20. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:140:y:2020:i:c:s1366554520305962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.