IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i1p52-74.html
   My bibliography  Save this article

The Value of Limited Flexibility in Service Network Designs

Author

Listed:
  • Ahmad Baubaid

    (Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332; Department of Systems Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia)

  • Natashia Boland

    (Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;)

  • Martin Savelsbergh

    (Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332;)

Abstract

Less-than-truckload carriers rely on the consolidation of freight from multiple shippers to achieve economies of scale. Collected freight is routed through a number of transfer terminals at each of which shipments are grouped together for the next leg of their journeys. We study the service network design problem confronted by these carriers. This problem includes determining (1) the number of services (trailers) to operate between each pair of terminals and (2) a load plan , which specifies the sequence of transfer terminals that freight with a given origin and destination will visit. Traditionally, for every terminal and every ultimate destination, a load plan specifies a unique next terminal. We introduce the p -alt model, which generalizes traditional load plans by allowing decision makers to specify a desired number of next-terminal options for terminal–destination pairs using a vector p . We compare a number of exact and heuristic approaches for solving a two-stage stochastic variant of the p -alt model. Using this model, we show that, by explicitly considering demand uncertainty and by merely allowing up to two next-terminal options for terminal–destination pairs in the load plans, carriers can generate substantial cost savings that are comparable to the ones yielded by adopting load plans that allow for any next terminal to be a routing option for terminal–destination pairs. Moreover, by using these more flexible load plans, carriers can generate savings on the order of 10% over traditional load plan designs obtained by deterministic models.

Suggested Citation

  • Ahmad Baubaid & Natashia Boland & Martin Savelsbergh, 2021. "The Value of Limited Flexibility in Service Network Designs," Transportation Science, INFORMS, vol. 55(1), pages 52-74, 1-2.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:1:p:52-74
    DOI: 10.1287/trsc.2020.1009
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2020.1009
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Warren B. Powell & Ioannis A. Koskosidis, 1992. "Shipment Routing Algorithms with Tree Constraints," Transportation Science, INFORMS, vol. 26(3), pages 230-245, August.
    2. Cynthia Barnhart & Rina R. Schneur, 1996. "Air Network Design for Express Shipment Service," Operations Research, INFORMS, vol. 44(6), pages 852-863, December.
    3. Kathleen Lindsey & Alan Erera & Martin Savelsbergh, 2016. "Improved Integer Programming-Based Neighborhood Search for Less-Than-Truckload Load Plan Design," Transportation Science, INFORMS, vol. 50(4), pages 1360-1379, November.
    4. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case†," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    5. Inghels, Dirk & Dullaert, Wout & Vigo, Daniele, 2016. "A service network design model for multimodal municipal solid waste transport," European Journal of Operational Research, Elsevier, vol. 254(1), pages 68-79.
    6. Lin, Cheng-Chang & Lin, Jeffery Sung-Jan, 2007. "The multistage stochastic integer load planning problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(2), pages 143-156, March.
    7. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    8. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.
    9. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    10. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    11. Cynthia Barnhart & Hong Jin & Pamela H. Vance, 2000. "Railroad Blocking: A Network Design Application," Operations Research, INFORMS, vol. 48(4), pages 603-614, August.
    12. Richa Agarwal & Özlem Ergun, 2008. "Ship Scheduling and Network Design for Cargo Routing in Liner Shipping," Transportation Science, INFORMS, vol. 42(2), pages 175-196, May.
    13. Grunert, Tore & Sebastian, Hans-Jurgen, 2000. "Planning models for long-haul operations of postal and express shipment companies," European Journal of Operational Research, Elsevier, vol. 122(2), pages 289-309, April.
    14. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    15. BIENSTOCK, Daniel & CHOPRA, Sunil & GÜNLÜK, Oktay & TSAI, Chih-Yang, 1998. "Minimum cost capacity installation for multicommodity network flows," LIDAM Reprints CORE 1391, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    17. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    18. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware & Alysia M. Wilson, 2004. "UPS Optimizes Its Air Network," Interfaces, INFORMS, vol. 34(1), pages 15-25, February.
    19. Warren B. Powell, 1986. "A Local Improvement Heuristic for the Design of Less-than-Truckload Motor Carrier Networks," Transportation Science, INFORMS, vol. 20(4), pages 246-257, November.
    20. Teodor Gabriel Crainic & Michel Gendreau & Judith M. Farvolden, 2000. "A Simplex-Based Tabu Search Method for Capacitated Network Design," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 223-236, August.
    21. Harry N. Newton & Cynthia Barnhart & Pamela H. Vance, 1998. "Constructing Railroad Blocking Plans to Minimize Handling Costs," Transportation Science, INFORMS, vol. 32(4), pages 330-345, November.
    22. Ilfat Ghamlouche & Teodor Crainic & Michel Gendreau, 2004. "Path Relinking, Cycle-Based Neighbourhoods and Capacitated Multicommodity Network Design," Annals of Operations Research, Springer, vol. 131(1), pages 109-133, October.
    23. Crainic, Teodor G. & Rousseau, Jean-Marc, 1986. "Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 225-242, June.
    24. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    25. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    26. T. L. Magnanti & R. T. Wong, 1984. "Network Design and Transportation Planning: Models and Algorithms," Transportation Science, INFORMS, vol. 18(1), pages 1-55, February.
    27. Lin, Cheng-Chang, 2001. "The freight routing problem of time-definite freight delivery common carriers," Transportation Research Part B: Methodological, Elsevier, vol. 35(6), pages 525-547, July.
    28. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    29. Xin Wang & Stein W. Wallace, 2016. "Stochastic scheduled service network design in the presence of a spot market for excess capacity," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(4), pages 393-413, December.
    30. G Lulli & U Pietropaoli & N Ricciardi, 2011. "Service network design for freight railway transportation: the Italian case," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2107-2119, December.
    31. Bai, Ruibin & Wallace, Stein W. & Li, Jingpeng & Chong, Alain Yee-Loong, 2014. "Stochastic service network design with rerouting," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 50-65.
    32. Tadashi Yamada & Bona Frazila Russ & Jun Castro & Eiichi Taniguchi, 2009. "Designing Multimodal Freight Transport Networks: A Heuristic Approach and Applications," Transportation Science, INFORMS, vol. 43(2), pages 129-143, May.
    33. Nozick, Linda K. & Morlok, Edward K., 1997. "A model for medium-term operations planning in an intermodal rail-truck service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 91-107, March.
    34. Warren B. Powell & Yosef Sheffi, 1989. "OR Practice—Design and Implementation of an Interactive Optimization System for Network Design in the Motor Carrier Industry," Operations Research, INFORMS, vol. 37(1), pages 12-29, February.
    35. Crainic, Teodor Gabriel, 2000. "Service network design in freight transportation," European Journal of Operational Research, Elsevier, vol. 122(2), pages 272-288, April.
    36. Daeki Kim & Cynthia Barnhart & Keith Ware & Gregory Reinhardt, 1999. "Multimodal Express Package Delivery: A Service Network Design Application," Transportation Science, INFORMS, vol. 33(4), pages 391-407, November.
    37. Crainic, Teodor Gabriel & Roy, Jacques, 1988. "OR tools for tactical freight transportation planning," European Journal of Operational Research, Elsevier, vol. 33(3), pages 290-297, February.
    38. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chuanju & Lin, Shaochong & Shen, Zuo-Jun Max & Zhang, Junlong, 2023. "Stochastic service network design: The value of fixed routes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    2. Herszterg, Ian & Ridouane, Yassine & Boland, Natashia & Erera, Alan & Savelsbergh, Martin, 2022. "Near real-time loadplan adjustments for less-than-truckload carriers," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1021-1034.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Wang & Teodor Gabriel Crainic & Stein W. Wallace, 2019. "Stochastic Network Design for Planning Scheduled Transportation Services: The Value of Deterministic Solutions," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 153-170, February.
    2. Greening, Lacy M. & Dahan, Mathieu & Erera, Alan L., 2023. "Lead-Time-Constrained Middle-Mile Consolidation Network Design with Fixed Origins and Destinations," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    3. Dall'Orto, Leonardo Campo & Crainic, Teodor Gabriel & Leal, Jose Eugenio & Powell, Warren B., 2006. "The single-node dynamic service scheduling and dispatching problem," European Journal of Operational Research, Elsevier, vol. 170(1), pages 1-23, April.
    4. Arnt-Gunnar Lium & Teodor Gabriel Crainic & Stein W. Wallace, 2009. "A Study of Demand Stochasticity in Service Network Design," Transportation Science, INFORMS, vol. 43(2), pages 144-157, May.
    5. Bai, Ruibin & Wallace, Stein W. & Li, Jingpeng & Chong, Alain Yee-Loong, 2014. "Stochastic service network design with rerouting," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 50-65.
    6. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    7. Ahmad I. Jarrah & Ellis Johnson & Lucas C. Neubert, 2009. "Large-Scale, Less-than-Truckload Service Network Design," Operations Research, INFORMS, vol. 57(3), pages 609-625, June.
    8. Wang, Zujian & Qi, Mingyao, 2019. "Service network design considering multiple types of services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 1-14.
    9. Chen, Chongshuang & Dollevoet, Twan & Zhao, Jun, 2018. "One-block train formation in large-scale railway networks: An exact model and a tree-based decomposition algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 1-30.
    10. Alan Erera & Michael Hewitt & Martin Savelsbergh & Yang Zhang, 2013. "Improved Load Plan Design Through Integer Programming Based Local Search," Transportation Science, INFORMS, vol. 47(3), pages 412-427, August.
    11. Teodor Gabriel Crainic & Nicoletta Ricciardi & Giovanni Storchi, 2009. "Models for Evaluating and Planning City Logistics Systems," Transportation Science, INFORMS, vol. 43(4), pages 432-454, November.
    12. C S Sung & S H Song, 2003. "Integrated service network design for a cross-docking supply chain network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(12), pages 1283-1295, December.
    13. Li, Xiangyong & Wei, Kai & Aneja, Y.P. & Tian, Peng, 2017. "Design-balanced capacitated multicommodity network design with heterogeneous assets," Omega, Elsevier, vol. 67(C), pages 145-159.
    14. Meuffels, W.J.M., 2015. "The design of road and air networks for express service providers," Other publications TiSEM d3266cb8-bc55-41be-adc7-4, Tilburg University, School of Economics and Management.
    15. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2017. "Commodity Representations and Cut-Set-Based Inequalities for Multicommodity Capacitated Fixed-Charge Network Design," Transportation Science, INFORMS, vol. 51(2), pages 650-667, May.
    16. Michael Berliner Pedersen & Teodor Gabriel Crainic & Oli B. G. Madsen, 2009. "Models and Tabu Search Metaheuristics for Service Network Design with Asset-Balance Requirements," Transportation Science, INFORMS, vol. 43(2), pages 158-177, May.
    17. Endong Zhu & Teodor Gabriel Crainic & Michel Gendreau, 2014. "Scheduled Service Network Design for Freight Rail Transportation," Operations Research, INFORMS, vol. 62(2), pages 383-400, April.
    18. Quesada Pérez, José Miguel & Lange, Jean-Charles & Tancrez, Jean-Sébastien, 2018. "A multi-hub Express Shipment Service Network Design model with flexible hub assignment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 120(C), pages 116-131.
    19. Andrew P. Armacost & Cynthia Barnhart & Keith A. Ware, 2002. "Composite Variable Formulations for Express Shipment Service Network Design," Transportation Science, INFORMS, vol. 36(1), pages 1-20, February.
    20. Mike Hewitt, 2019. "Enhanced Dynamic Discretization Discovery for the Continuous Time Load Plan Design Problem," Transportation Science, INFORMS, vol. 53(6), pages 1731-1750, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:1:p:52-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.