IDEAS home Printed from https://ideas.repec.org/p/sgc/wpaper/51.html
   My bibliography  Save this paper

Land use decision modeling with dynamically updated soil carbon emission rates

Author

Listed:
  • Uwe A. Schneider

    (Research unit Sustainability and Global Change, Hamburg)

Abstract

Soil carbon can be sequestered through different land management options depending on the soil carbon status at the beginning of a management period. This initial status results from a given soil management history in a given soil climate regime. Similarly, the prediction of future carbon storage depends on the time sequence of future soil management. Unfortunately, the number of possible management trajectories reaches non-computable levels so fast that explicit representations of management trajectories are impractical for most existing land use decision models. Consequently, the impact of different management trajectories has been ignored. This article proposes a computationally feasible mathematical programming method for integration of soil status dependent sequestration rates in land use decision optimization models. The soil status is represented by an array of adjacent status classes. For each combination of soil management and initial soil status class, transition probabilities of moving into a new or staying in the same status class are computed. Subsequently, these probabilities are used in dynamic equations to update the soil status level before and after each new soil management period. To illustrate the impacts of the proposed method, a simple hypothetical land use decision model is solved for alternative specifications.

Suggested Citation

  • Uwe A. Schneider, 2004. "Land use decision modeling with dynamically updated soil carbon emission rates," Working Papers FNU-51, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2004.
  • Handle: RePEc:sgc:wpaper:51
    as

    Download full text from publisher

    File URL: http://www.fnu.zmaw.de/fileadmin/fnu-files/publication/working-papers/dyncarbrates.pdf
    File Function: First version, 2004
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian C. Murray & Bruce A. McCarl & Heng-Chi Lee, 2004. "Estimating Leakage from Forest Carbon Sequestration Programs," Land Economics, University of Wisconsin Press, vol. 80(1), pages 109-124.
    2. S De Cara & P-A Jayet, 2000. "Emissions of greenhouse gases from agriculture: the heterogeneity of abatement costs in France," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 27(3), pages 281-303, September.
    3. Brent Sohngen & Robert Mendelsohn, 2003. "An Optimal Control Model of Forest Carbon Sequestration," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 448-457.
    4. Schneider, Uwe A. & Kumar, Pushpam, 2008. "Greenhouse Gas Mitigation through Agriculture," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 23(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hediger, Werner, 2009. "The non-permanence of optimal soil carbon sequestration," 83rd Annual Conference, March 30 - April 1, 2009, Dublin, Ireland 51057, Agricultural Economics Society.
    2. McCarl, Bruce A. & Attavanich, Witsanu & Musumba, Mark & Mu, Jianhong E. & Aisabokhae, Ruth, 2011. "Land Use and Climate Change," MPRA Paper 83993, University Library of Munich, Germany, revised 2014.
    3. Baker, J.S. & Wade, C.M. & Sohngen, B.L. & Ohrel, S. & Fawcett, A.A., 2019. "Potential complementarity between forest carbon sequestration incentives and biomass energy expansion," Energy Policy, Elsevier, vol. 126(C), pages 391-401.
    4. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    5. Jianhong Mu & Anne Wein & Bruce McCarl, 2015. "Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(7), pages 1041-1054, October.
    6. Chen, Jiandong & Cheng, Shulei & Song, Malin, 2018. "Changes in energy-related carbon dioxide emissions of the agricultural sector in China from 2005 to 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 748-761.
    7. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    8. de Cara, Stephane & Rozakis, Stelios, 2004. "Carbon sequestration through the planting of multi-annual energy crops: A dynamic and spatial assessment," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 5(1), pages 1-17, January.
    9. Ovando, Paola & Caparrós, Alejandro, 2009. "Land use and carbon mitigation in Europe: A survey of the potentials of different alternatives," Energy Policy, Elsevier, vol. 37(3), pages 992-1003, March.
    10. Heng-Chi Lee & Bruce McCarl & Uwe Schneider & Chi-Chung Chen, 2007. "Leakage and Comparative Advantage Implications of Agricultural Participation in Greenhouse Gas Emission Mitigation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 12(4), pages 471-494, May.
    11. de Cara, Stephane & Houze, Martin & Jayet, Pierre-Alain, 2004. "Greenhouse gas emissions from agriculture in the EU: A spatial assessment of sources and abatement costs," 2004 Conference (48th), February 11-13, 2004, Melbourne, Australia 58401, Australian Agricultural and Resource Economics Society.
    12. Golub, Alla & Hertel, Thomas & Lee, Huey-Lin & Rose, Steven & Sohngen, Brent, 2009. "The opportunity cost of land use and the global potential for greenhouse gas mitigation in agriculture and forestry," Resource and Energy Economics, Elsevier, vol. 31(4), pages 299-319, November.
    13. Im, Eun Ho & Adams, Darius M. & Latta, Gregory S., 2007. "Potential impacts of carbon taxes on carbon flux in western Oregon private forests," Forest Policy and Economics, Elsevier, vol. 9(8), pages 1006-1017, May.
    14. Acosta, Montserrat & Sohngen, Brent, 2009. "How big is leakage from forestry carbon credits? Estimates from a Global Model," 2009 Annual Meeting, July 26-28, 2009, Milwaukee, Wisconsin 49468, Agricultural and Applied Economics Association.
    15. Glenk, Klaus & Eory, Vera & Colombo, Sergio & Barnes, Andrew, 2014. "Adoption of greenhouse gas mitigation in agriculture: An analysis of dairy farmers' perceptions and adoption behaviour," Ecological Economics, Elsevier, vol. 108(C), pages 49-58.
    16. García, Jorge H. & Orlov, Anton & Aaheim, Asbjørn, 2018. "Negative leakage: The key role of forest management regimes," Journal of Forest Economics, Elsevier, vol. 33(C), pages 8-13.
    17. Garnache, Cloe & Merel, Pierre R., 2012. "Carbon market policy design: Investigating the role of payments aggregation," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124960, Agricultural and Applied Economics Association.
    18. Stavins, Robert & Plantinga, Andrew & Lubowski, Ruben, 2005. "Land-Use Change and Carbon Sinks," RFF Working Paper Series dp-05-04, Resources for the Future.
    19. Alix-Garcia, Jennifer & Wolff, Hendrik, 2014. "Payment for Ecosystem Services from Forests," IZA Discussion Papers 8179, Institute of Labor Economics (IZA).
    20. De Pinto, Alessandro & Robertson, Richard D. & Obiri, Beatrice Darko, 2013. "Adoption of climate change mitigation practices by risk-averse farmers in the Ashanti Region, Ghana," Ecological Economics, Elsevier, vol. 86(C), pages 47-54.

    More about this item

    Keywords

    Soil carbon sequestration; Sink dynamics; Mathematical programming; Land use; Optimization; Agriculture; Forestry; Greenhouse gas mitigation;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sgc:wpaper:51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Uwe Schneider (email available below). General contact details of provider: https://edirc.repec.org/data/zmhamde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.