Advanced Search
MyIDEAS: Login to save this paper or follow this series

Existence of Equilibrium for Integer Allocation Problems

Contents:

Author Info

  • Somdeb Lahiri

    ()
    (CAFS IFMR)

Abstract

In this paper we show that if all agents are equipped with well-behaved discrete concave production functions, then a feasible price allocation pair is a market equilibrium if and only if it solves a linear programming problem. Using this result we are able to obtain a necessary and sufficient condition for existence that requires an equilibrium price vector to satisfy finitely many inequalities. A necessary and sufficient condition for the existence of market equilibrium when the maximum value function is Weakly Monotonic at the initial endowment that follows from our results is that the maximum value function is partially concave at the initial endowment. We also provide a discussion of the results and an alternative solution concept. The alternative solution concept is however, informationally and computationally inefficient.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://repec.org/sce2006/up.12781.1135589227.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 8.

as in new window
Length:
Date of creation: 04 Jul 2006
Date of revision:
Handle: RePEc:sce:scecfa:8

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: existence; market equilibrium; discrete concave; linear programming;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Shapley, Lloyd S. & Shubik, Martin, 1969. "On market games," Journal of Economic Theory, Elsevier, vol. 1(1), pages 9-25, June.
  2. Somdeb Lahiri, 2005. "Manipulation via Endowments in a Market with Profit Maximizing Agents," Game Theory and Information 0511008, EconWPA.
  3. Zaifu YANG & Ning SUN, 2004. "The Max-Convolution Approach to Equilibrium Models with Indivisibilities," Econometric Society 2004 Far Eastern Meetings 564, Econometric Society.
  4. Bikhchandani, Sushil & Ostroy, Joseph M., 2002. "The Package Assignment Model," Journal of Economic Theory, Elsevier, vol. 107(2), pages 377-406, December.
  5. Peter R. Wurman & Michael P. Wellman, 1999. "Equilibrium Prices in Bundle Auctions," Working Papers 99-09-064, Santa Fe Institute.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:8. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.