IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/80.html
   My bibliography  Save this paper

Modelling Expectations With Genefer- An Artificial Intelligence Approach

Author

Listed:
  • Stefan Kooths

    (Westfaelische Wilhelms-Universitaet Muenster)

  • Eric Ringhut

    (University of Muenster)

Abstract

Economic modelling of financial markets means to model highly complex systems in which expectations can be the dominant driving forces. Therefore it is necessary to focus on how agents form their expectations. We believe that they look for patterns, hypothesize, try, make mistakes, learn and adapt. AgentsÆ bounded rationality leads us to a rule-based approach which we model using Fuzzy Rule-Bases. E. g. if a single agent believes the exchange rate is determined by a set of possible inputs and is asked to put their relationship in words his answer will probably reveal a fuzzy nature like: "IF the inflation rate in the EURO-Zone is low and the GDP growth rate is larger than in the US THEN the EURO will rise against the USD". æLowÆ and ælargerÆ are fuzzy terms which give a gradual linguistic meaning to crisp intervalls in the respective universes of discourse. In order to learn a Fuzzy Fuzzy Rule base from examples we introduce Genetic Algorithms and Artificial Neural Networks as learning operators. These examples can either be empirical data or originate from an economic simulation model. The software GENEFER (GEnetic NEural Fuzzy ExplorER) has been developed for designing such a Fuzzy Rule Base. The design process is modular and comprises Input Identification, Fuzzification, Rule-Base Generating and Rule-Base Tuning. The two latter steps make use of genetic and neural learning algorithms for optimizing the Fuzzy Rule-Base.

Suggested Citation

  • Stefan Kooths & Eric Ringhut, 2000. "Modelling Expectations With Genefer- An Artificial Intelligence Approach," Computing in Economics and Finance 2000 80, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:80
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper80.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard B. Olsen & Michel M. Dacorogna & Ulrich A. Muller, & Olivier V. Pictet, "undated". "Going Back to the Basics - Rethinking Market Efficiency," Working Papers 1992-09-07., Olsen and Associates.
    2. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    3. J. Doyne Farmer, 2000. "Physicists Attempt To Scale The Ivory Towers Of Finance," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 311-333.
    4. Arthur, W Brian, 1994. "Inductive Reasoning and Bounded Rationality," American Economic Review, American Economic Association, vol. 84(2), pages 406-411, May.
    5. Marengo, Luigi & Tordjman, Helene, 1996. "Speculation, Heterogeneity and Learning: A Simulation Model of Exchange Rates Dynamics," Kyklos, Wiley Blackwell, vol. 49(3), pages 407-438.
    6. McFadden, Daniel, 1999. "Rationality for Economists?," Journal of Risk and Uncertainty, Springer, vol. 19(1-3), pages 73-105, December.
    7. Vriend, Nicolaas J., 2000. "An illustration of the essential difference between individual and social learning, and its consequences for computational analyses," Journal of Economic Dynamics and Control, Elsevier, vol. 24(1), pages 1-19, January.
    8. Beltrametti, Luca & Fiorentini, Riccardo & Marengo, Luigi & Tamborini, Roberto, 1997. "A learning-to-forecast experiment on the foreign exchange market with a classifier system," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1543-1575, June.
    9. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    10. Luigi Marengo & Hélène Tordjman, 1996. "Speculation, Heterogeneity and Learning: A Simulation Model of Exchange Rates Dynamics," Kyklos, Wiley Blackwell, vol. 49(3), pages 407-438, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu-Heng Chen & Chung-Ching Tai, 2006. "Republication: On the Selection of Adaptive Algorithms in ABM: A Computational-Equivalence Approach," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 313-331, November.
    2. Floortje Alkemade & Han Poutré & Hans Amman, 2006. "Robust Evolutionary Algorithm Design for Socio-economic Simulation," Computational Economics, Springer;Society for Computational Economics, vol. 28(4), pages 355-370, November.
    3. Shu-Heng Chen & Chung-Ching Tai, 2006. "On the Selection of Adaptive Algorithms in ABM: A Computational-Equivalence Approach," Computational Economics, Springer;Society for Computational Economics, vol. 28(1), pages 51-69, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.
    2. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2009. "More hedging instruments may destabilize markets," Journal of Economic Dynamics and Control, Elsevier, vol. 33(11), pages 1912-1928, November.
    3. Ryuichi YAMAMOTO, 2005. "Evolution with Individual and Social Learning in an Agent-Based Stock Market," Computing in Economics and Finance 2005 228, Society for Computational Economics.
    4. Skouras, Spyros, 2001. "Financial returns and efficiency as seen by an artificial technical analyst," Journal of Economic Dynamics and Control, Elsevier, vol. 25(1-2), pages 213-244, January.
    5. Sergio Da Silva, 2004. "International Finance, Levy Distributions, and the Econophysics of Exchange Rates," International Finance 0405018, University Library of Munich, Germany.
    6. Leigh Tesfatsion, 2002. "Agent-Based Computational Economics," Computational Economics 0203001, University Library of Munich, Germany, revised 15 Aug 2002.
    7. Shu-Heng Chen & Chia-Hsuan Yeh, 1999. "Evolving Traders and the Faculty of the Business School: A New Architecture of the Artificial Stock Market," Computing in Economics and Finance 1999 613, Society for Computational Economics.
    8. Karolina Safarzyńska & Jeroen Bergh, 2010. "Evolutionary models in economics: a survey of methods and building blocks," Journal of Evolutionary Economics, Springer, vol. 20(3), pages 329-373, June.
    9. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    10. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    11. Smith, Peter, 2004. "Reworking the Standard Model of Competitive Markets: The Role of Fuzzy Logic and Genetic Algorithms in Modelling Complex Non-Linear Economic System," General Discussion Papers 30569, University of Manchester, Institute for Development Policy and Management (IDPM).
    12. Stefano Balbi & Carlo Giupponi, 2009. "Reviewing agent-based modelling of socio-ecosystems: a methodology for the analysis of climate change adaptation and sustainability," Working Papers 2009_15, Department of Economics, University of Venice "Ca' Foscari".
    13. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    14. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    15. Scott C. Linn & Nicholas S. P. Tay, 2007. "Complexity and the Character of Stock Returns: Empirical Evidence and a Model of Asset Prices Based on Complex Investor Learning," Management Science, INFORMS, vol. 53(7), pages 1165-1180, July.
    16. Salle, Isabelle & Yildizoglu, Murat & Zumpe, Martin & Sénégas, Marc-Alexandre, 2017. "Coordination through social learning in a general equilibrium model," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 64-82.
    17. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press, vol. 11(5), pages 895-953, November.
    18. Roberto Savona & Maxence Soumare & Jørgen Vitting Andersen, 2015. "Financial Symmetry and Moods in the Market," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-21, April.
    19. Shareen Joshi & Mark A. Bedau, 1998. "An Explanation of Generic Behavior in an Evolving Financial Market," Research in Economics 98-12-114e, Santa Fe Institute.
    20. Anthony Patt & Bernd Siebenhüner, 2005. "Agent Based Modeling and Adaption to Climate Change," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 74(2), pages 310-320.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.