IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/92999.html
   My bibliography  Save this paper

Waste Decomposition Analysis in Japanese manufacturing sectors for Material Flow Cost Accounting

Author

Listed:
  • Yagi, Michiyuki
  • Kokubu, Katsuhiko

Abstract

From the perspective of material flow cost accounting (MFCA), which treats both material and financial flows within a company, this study proposes a corporate waste decomposition model to investigate the effects of material and financial factors on corporate waste generation. The proposed model decomposes waste into the material loss (waste ratio of raw materials [WRMat]), raw material-to-cost ratio (RtCR; material use efficiency), cost-to-sales ratio (or COGSR), total asset turnover ratio (TATR), leverage, and total equity. As an application, the waste decomposition analysis is performed using the log-mean Divisia index (LMDI) method, and 125 listed firms in 5 Japanese manufacturing sectors from 2010 to 2015 are analyzed. The LMDI results show that the RtCR, the most crucial term in MFCA, had the largest effect on increases in waste generation as of 2015; however, this effect is not so robust among sectors over the years, implying that MFCA is valid mainly for specific companies/sectors or years. Also, corporate environmental burdens (waste and carbon emission) are likely to be correlated negatively with leverage and positively with total equity in the models, implying that the financial and stock markets have an essential role in deciding corporate environmental burdens.

Suggested Citation

  • Yagi, Michiyuki & Kokubu, Katsuhiko, 2019. "Waste Decomposition Analysis in Japanese manufacturing sectors for Material Flow Cost Accounting," MPRA Paper 92999, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:92999
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/92999/1/MPRA_paper_92999.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yagi, Michiyuki & Kokubu, Katsuhiko, 2018. "Corporate material flow management in Thailand: The way to material flow cost accounting," MPRA Paper 87926, University Library of Munich, Germany.
    2. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    3. Chong, ChinHao & Ma, Linwei & Li, Zheng & Ni, Weidou & Song, Shizhong, 2015. "Logarithmic mean Divisia index (LMDI) decomposition of coal consumption in China based on the energy allocation diagram of coal flows," Energy, Elsevier, vol. 85(C), pages 366-378.
    4. Michiyuki Yagi & Shunsuke Managi, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1476-1492, December.
    5. Hidemichi Fujii & Shunsuke Managi, 2013. "Decomposition of Toxic Chemical Substance Management in Three U.S. Manufacturing Sectors from 1991 to 2008," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 461-471, June.
    6. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    7. Stefan Lewandowski, 2017. "Corporate Carbon and Financial Performance: The Role of Emission Reductions," Business Strategy and the Environment, Wiley Blackwell, vol. 26(8), pages 1196-1211, December.
    8. Wang, Zhiping & Feng, Chao & Chen, Jinyu & Huang, Jianbai, 2017. "The driving forces of material use in China: An index decomposition analysis," Resources Policy, Elsevier, vol. 52(C), pages 336-348.
    9. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    10. Lozano, Sebastián & Gutiérrez, Ester, 2008. "Non-parametric frontier approach to modelling the relationships among population, GDP, energy consumption and CO2 emissions," Ecological Economics, Elsevier, vol. 66(4), pages 687-699, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Zhao & Zhixin Liu, 2022. "Drivers of CO 2 Emissions: A Debt Perspective," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    2. Yagi, Michiyuki & Kokubu, Katsuhiko, 2020. "A Framework of Sustainable Consumption and Production from the Production Perspective: Application to Thailand and Vietnam," MPRA Paper 103931, University Library of Munich, Germany.
    3. Wu, Jianxin & Xu, Hui & Tang, Kai, 2021. "Industrial agglomeration, CO2 emissions and regional development programs: A decomposition analysis based on 286 Chinese cities," Energy, Elsevier, vol. 225(C).
    4. Asghar Hakimi & Zahra Abedi & Fatemeh Dadashian, 2021. "Increasing Energy and Material Consumption Efficiency by Application of Material and Energy Flow Cost Accounting System (Case Study: Turbine Blade Production)," Sustainability, MDPI, vol. 13(9), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michiyuki Yagi & Shunsuke Managi, 2018. "Decomposition analysis of corporate carbon dioxide and greenhouse gas emissions in Japan: Integrating corporate environmental and financial performances," Business Strategy and the Environment, Wiley Blackwell, vol. 27(8), pages 1476-1492, December.
    2. Robi Kurniawan & Gregory P. Trencher & Achmed S. Edianto & Imam E. Setiawan & Kazuyo Matsubae, 2020. "Understanding the Multi-Faceted Drivers of Increasing Coal Consumption in Indonesia," Energies, MDPI, vol. 13(14), pages 1-22, July.
    3. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    4. Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
    5. Yunlong Zhao & Geng Kong & Chin Hao Chong & Linwei Ma & Zheng Li & Weidou Ni, 2021. "How to Effectively Control Energy Consumption Growth in China’s 29 Provinces: A Paradigm of Multi-Regional Analysis Based on EAALMDI Method," Sustainability, MDPI, vol. 13(3), pages 1-26, January.
    6. Oliver I. Inah & Fidelis I. Abam & Bethrand N. Nwankwojike, 2022. "Exploring the CO2 emissions drivers in the Nigerian manufacturing sector through decomposition analysis and the potential of carbon tax (CAT) policy on CO2 mitigation," Future Business Journal, Springer, vol. 8(1), pages 1-22, December.
    7. Boratyński, Jakub, 2021. "Decomposing structural decomposition: The role of changes in individual industry shares," Energy Economics, Elsevier, vol. 103(C).
    8. Tang, Chengcai & Zhong, Linsheng & Ng, Pin, 2017. "Factors that Influence the Tourism Industry's Carbon Emissions: a Tourism Area Life Cycle Model Perspective," Energy Policy, Elsevier, vol. 109(C), pages 704-718.
    9. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    10. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    11. Isik, Mine & Ari, Izzet & Sarica, Kemal, 2021. "Challenges in the CO2 emissions of the Turkish power sector: Evidence from a two-level decomposition approach," Utilities Policy, Elsevier, vol. 70(C).
    12. Zhang, Chenjun & Wu, Yusi & Yu, Yu, 2020. "Spatial decomposition analysis of water intensity in China," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    13. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    14. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    15. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    16. Tian Zhao & Zhixin Liu, 2022. "Drivers of CO 2 Emissions: A Debt Perspective," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    17. Enkhjargal Enkhbat & Yong Geng & Xi Zhang & Huijuan Jiang & Jingyu Liu & Dong Wu, 2020. "Driving Forces of Air Pollution in Ulaanbaatar City Between 2005 and 2015: An Index Decomposition Analysis," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    18. Yang, Lisha & Lin, Boqiang, 2016. "Carbon dioxide-emission in China׳s power industry: Evidence and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 258-267.
    19. Goh, Tian & Ang, B.W. & Xu, X.Y., 2018. "Quantifying drivers of CO2 emissions from electricity generation – Current practices and future extensions," Applied Energy, Elsevier, vol. 231(C), pages 1191-1204.
    20. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.

    More about this item

    Keywords

    material flow cost accounting; waste efficiency; Japanese manufacturing industries; log-mean Divisia index;
    All these keywords.

    JEL classification:

    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:92999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.