Advanced Search
MyIDEAS: Login

A new information theoretical measure of global and local spatial association

Contents:

Author Info

  • Karlström, Anders
  • Ceccato, Vania
Registered author(s):

    Abstract

    In this paper a new measure of spatial association, the S statistics, is developed. The proposed measure is based on information theory by defining a spatially weighted information measure (entropy measure) that takes the spatial configuration into account. The proposed S-statistics has an intuitive interpretation, and furthermore fulfills properties that are expected from an entropy measure. Moreover, the S statistics is a global measure of spatial association that can be decomposed into Local Indicators of Spatial Association (LISA). This new measure is tested using a dataset of employment in the culture sector that was attached to the wards over Stockholm County and later compared with the results from current global and local measures of spatial association. It is shown that the proposed S statistics share many properties with Moran's I and Getis-Ord Gi statistics. The local Si statistics showed significant spatial association similar to the Gi statistic, but has the advantage of being possible to aggregate to a global measure of spatial association. The statistics can also be extended to bivariate distributions. It is shown that the commonly used Bayesian empirical approach can be interpreted as a Kullback-Leibler divergence measure. An advantage of S-statistics is that this measure select only the most robust clusters, eliminating the contribution of smaller ones composed by few observations and that may inflate the global measure.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://mpra.ub.uni-muenchen.de/6848/
    File Function: original version
    Download Restriction: no

    Bibliographic Info

    Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 6848.

    as in new window
    Length:
    Date of creation: Aug 2000
    Date of revision:
    Handle: RePEc:pra:mprapa:6848

    Contact details of provider:
    Postal: Schackstr. 4, D-80539 Munich, Germany
    Phone: +49-(0)89-2180-2219
    Fax: +49-(0)89-2180-3900
    Web page: http://mpra.ub.uni-muenchen.de
    More information through EDIRC

    Related research

    Keywords: Global and local measure of spatial association; LISA; S-statistics; Gi statistics; Moran's I; Kullback-Leibler divergence;

    Find related papers by JEL classification:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Snickars, Folke & Weibull, Jorgen W., 1977. "A minimum information principle : Theory and practice," Regional Science and Urban Economics, Elsevier, vol. 7(1-2), pages 137-168, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:6848. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.