Advanced Search
MyIDEAS: Login to save this paper or follow this series

Optimal Acid Rain Abatement Strategies for Eastern Canada

Contents:

Author Info

  • Mariam, Yohannes
  • Smith, W.B.G.

Abstract

In the past environmental management practices have been based on disparate analysis of the impacts of pollutants on selected components of ecosystems. However, holistic analysis of emission reduction strategies is necessary to justify that actions taken to protect the environment would not unduly punish economic growth or vice versa. When environmental management programs are implemented, it would be extremely difficult for the industry to attain the targeted emission reduction in a single year in order to eliminate impacts on ecosystems. It means that targets have to be established as increments or narrowing the gap between the desired level of atmospheric deposition and actual deposition. These targets should also be designed in a way that would balance the impacts on the economy with improvements in environmental quality. Environment Canada in partnership with other organizations has developed an Integrated Assessment Modeling Platform. This platform enables to identify an emission reduction strategy(ies) that is(are) able to attain the desired environmental protection at a minimum cost to the industry. In this study, an attempt is made to examine the impact on the industry when the level of protection provided to the aquatic ecosystems is implemented using environmental and environmental-economic goals as objectives using Canadian IAM platform. The modeling platform takes into account sources and receptor regions in North America. The results of the analysis indicated that reductions of at least 50% of depositions of SO2 would require complete removal of emissions from all sources. However, this is not compatible with the paradigm of balancing economy with the environment. Therefore, gradual reductions in emissions as well as depositions were found to be plausible strategy. Furthermore, optimization using only a single receptor at a time resulted in significantly higher reduction in emissions compared to optimization that incorporates all the twelve Canadian receptors in a single run. It implies that globally optimal emission reduction strategy (i.e., multi-receptor optimization) would not penalize the sources of emission compared to locally optimal emission reduction strategy (i.e., single receptor optimization). It is hoped that with this kind of analysis of feasible environmental targets can be put in place without jeopardizing the performance of the economy or industry while ensuring continual improvements in environmental health of ecosystems.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/661/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 661.

as in new window
Length:
Date of creation: Apr 1998
Date of revision: Apr 1999
Handle: RePEc:pra:mprapa:661

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Canada; long-range transport; air pollutants; acid deposition; North America; sources-receptors; negotiation; cost; emissions; cost functions; SO2; cost curves; control technologies; Integrated Assessment Modelling; USA;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Maddison, David, 1995. "A cost-benefit analysis of slowing climate change," Energy Policy, Elsevier, Elsevier, vol. 23(4-5), pages 337-346.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:661. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.