IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/57102.html
   My bibliography  Save this paper

Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations

Author

Listed:
  • Rubio, Francisco Javier
  • Steel, Mark F. J.

Abstract

We introduce the family of univariate double two–piece distributions, obtained by using a density– based transformation of unimodal symmetric continuous distributions with a shape parameter. The resulting distributions contain five interpretable parameters that control the mode, as well as the scale and shape in each direction. Four-parameter subfamilies of this class of distributions that capture different types of asymmetry are presented. We propose interpretable scale and location-invariant benchmark priors and derive conditions for the existence of the corresponding posterior distribution. The prior structures used allow for meaningful comparisons through Bayes factors within flexible families of distributions. These distributions are applied to models in finance, internet traffic data, and medicine, comparing them with appropriate competitors.

Suggested Citation

  • Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:57102
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/57102/1/MPRA_paper_57102.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    2. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    3. Fernández, Carmen & Steel, Mark F.J., 2000. "Bayesian Regression Analysis With Scale Mixtures Of Normals," Econometric Theory, Cambridge University Press, vol. 16(1), pages 80-101, February.
    4. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    5. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    6. Ley, Christophe & Paindaveine, Davy, 2010. "Multivariate skewing mechanisms: A unified perspective based on the transformation approach," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1685-1694, December.
    7. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    8. Ingo Klein & Matthias Fischer, 2006. "Power kurtosis transformations: Definition, properties and ordering," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(3), pages 395-401, September.
    9. Daowen Zhang & Marie Davidian, 2001. "Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data," Biometrics, The International Biometric Society, vol. 57(3), pages 795-802, September.
    10. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark F. J. Steel & Francisco J. Rubio, 2015. "Discussion," International Statistical Review, International Statistical Institute, vol. 83(2), pages 218-222, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    2. Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
    3. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.
    4. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    5. Dongming Zhu & John W. Galbraith, 2009. "Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution," CIRANO Working Papers 2009s-24, CIRANO.
    6. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    7. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    8. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    9. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    10. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    11. Ibrahim Ergen, 2015. "Two-step methods in VaR prediction and the importance of fat tails," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 1013-1030, June.
    12. De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
    13. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    14. J. Rosco & M. Jones & Arthur Pewsey, 2011. "Skew t distributions via the sinh-arcsinh transformation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 630-652, November.
    15. Lyu, Yongjian & Wang, Peng & Wei, Yu & Ke, Rui, 2017. "Forecasting the VaR of crude oil market: Do alternative distributions help?," Energy Economics, Elsevier, vol. 66(C), pages 523-534.
    16. Rui Li & Saralees Nadarajah, 2020. "A review of Student’s t distribution and its generalizations," Empirical Economics, Springer, vol. 58(3), pages 1461-1490, March.
    17. Nadarajah, Saralees & Chan, Stephen & Afuecheta, Emmanuel, 2013. "On the characteristic function for asymmetric Student t distributions," Economics Letters, Elsevier, vol. 121(2), pages 271-274.
    18. Adcock, C J & Meade, N, 2017. "Using parametric classification trees for model selection with applications to financial risk management," European Journal of Operational Research, Elsevier, vol. 259(2), pages 746-765.
    19. J. Miguel Marin & Genaro Sucarrat, 2015. "Financial density selection," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1195-1213, November.
    20. Tsung-I Lin & Pal Wu & Geoffrey McLachlan & Sharon Lee, 2015. "A robust factor analysis model using the restricted skew- $$t$$ t distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 510-531, September.

    More about this item

    Keywords

    model comparison; posterior existence; prior elicitation; scale mixtures of normals; unimodal continuous distributions;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:57102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.