IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v299y2021i1d10.1007_s10479-019-03305-z.html
   My bibliography  Save this article

Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach

Author

Listed:
  • Gurjeet Dhesi

    (London South Bank University)

  • Bilal Shakeel

    (London South Bank University)

  • Marcel Ausloos

    (University of Leicester
    Bucharest University of Economic Studies)

Abstract

This paper reports a new methodology and results on the forecast of the numerical value of the fat tail(s) in asset returns distributions using the irrational fractional Brownian motion model. Optimal model parameter values are obtained from fits to consecutive daily 2-year period returns of S&P500 index over [1950–2016], generating 33-time series estimations. Through an econometric model, the kurtosis of returns distributions is modelled as a function of these parameters. Subsequently an auto-regressive analysis on these parameters advances the modelling and forecasting of kurtosis and returns distributions, providing the accurate shape of returns distributions and measurement of Value at Risk.

Suggested Citation

  • Gurjeet Dhesi & Bilal Shakeel & Marcel Ausloos, 2021. "Modelling and forecasting the kurtosis and returns distributions of financial markets: irrational fractional Brownian motion model approach," Annals of Operations Research, Springer, vol. 299(1), pages 1397-1410, April.
  • Handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03305-z
    DOI: 10.1007/s10479-019-03305-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03305-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03305-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ausloos, Marcel, 2016. "Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological solitonAuthor-Name: Dhesi, Gurjeet," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 119-125.
    2. Tapiero, Charles S. & Vallois, Pierre, 2018. "Randomness and fractional stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 54-60.
    3. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    4. Ley, Christophe & Paindaveine, Davy, 2010. "Multivariate skewing mechanisms: A unified perspective based on the transformation approach," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1685-1694, December.
    5. Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521710091.
    6. J. Michael Harrison & Thomas M. Sellke & Allison J. Taylor, 1983. "Impulse Control of Brownian Motion," Mathematics of Operations Research, INFORMS, vol. 8(3), pages 454-466, August.
    7. Maria Rosa Borges, 2010. "Efficient market hypothesis in European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 16(7), pages 711-726.
    8. Peter Kloeden & Andreas Neuenkirch & Raffaella Pavani, 2011. "Multilevel Monte Carlo for stochastic differential equations with additive fractional noise," Annals of Operations Research, Springer, vol. 189(1), pages 255-276, September.
    9. Gurjeet Dhesi & Marcel Ausloos, 2016. "Modelling and Measuring the Irrational behaviour of Agents in Financial Markets: Discovering the Psychological Soliton," Papers 1601.01553, arXiv.org.
    10. Robert Elliott & Tak Siu, 2010. "On risk minimizing portfolios under a Markovian regime-switching Black-Scholes economy," Annals of Operations Research, Springer, vol. 176(1), pages 271-291, April.
    11. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(2), pages 211-239, June.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Di Matteo, T. & Aste, T. & Dacorogna, M.M., 2003. "Scaling behaviors in differently developed markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 183-188.
    14. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    15. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    16. Frank Critchley & M. C. Jones, 2008. "Asymmetry and Gradient Asymmetry Functions: Density‐Based Skewness and Kurtosis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(3), pages 415-437, September.
    17. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    18. Hideharu Funahashi & Tomohide Higuchi, 2018. "An analytical approximation for single barrier options under stochastic volatility models," Annals of Operations Research, Springer, vol. 266(1), pages 129-157, July.
    19. Hwang, Soosung & Satchell, Stephen E, 1999. "Modelling Emerging Market Risk Premia Using Higher Moments," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 4(4), pages 271-296, October.
    20. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    21. Ausloos, Marcel & Jovanovic, Franck & Schinckus, Christophe, 2016. "On the “usual” misunderstandings between econophysics and finance: Some clarifications on modelling approaches and efficient market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 7-14.
    22. Robert C. Merton, 1975. "An Asymptotic Theory of Growth Under Uncertainty," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 42(3), pages 375-393.
    23. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    24. José Manuel Corcuera & David Nualart & Wim Schoutens, 2005. "Completion of a Lévy market by power-jump assets," Finance and Stochastics, Springer, vol. 9(1), pages 109-127, January.
    25. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
    26. Josep Vives & Jorge A. León & Frederic Utzet & Josep L. Solé, 2002. "On Lévy processes, Malliavin calculus and market models with jumps," Finance and Stochastics, Springer, vol. 6(2), pages 197-225.
    27. Mills,Terence C. & Markellos,Raphael N., 2008. "The Econometric Modelling of Financial Time Series," Cambridge Books, Cambridge University Press, number 9780521883818.
    28. Hirshleifer, David & Subrahmanyam, Avanidhar & Titman, Sheridan, 2006. "Feedback and the success of irrational investors," Journal of Financial Economics, Elsevier, vol. 81(2), pages 311-338, August.
    29. Melda Ormeci & J. G. Dai & John Vande Vate, 2008. "Impulse Control of Brownian Motion: The Constrained Average Cost Case," Operations Research, INFORMS, vol. 56(3), pages 618-629, June.
    30. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    31. Ángel León & Gonzalo Rubio & Gregorio Serna, 2004. "Autoregressive Conditional Volatility, Skewness And Kurtosis," Working Papers. Serie AD 2004-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    32. Efsun Kürüm & Gerhard-Wilhelm Weber & Cem Iyigun, 2018. "Early warning on stock market bubbles via methods of optimization, clustering and inverse problems," Annals of Operations Research, Springer, vol. 260(1), pages 293-320, January.
    33. Tak Siu, 2012. "A BSDE approach to risk-based asset allocation of pension funds with regime switching," Annals of Operations Research, Springer, vol. 201(1), pages 449-473, December.
    34. Gençay, Ramazan & Dacorogna, Michel & Muller, Ulrich A. & Pictet, Olivier & Olsen, Richard, 2001. "An Introduction to High-Frequency Finance," Elsevier Monographs, Elsevier, edition 1, number 9780122796715.
    35. Campbell R. Harvey & Akhtar Siddique, 2000. "Conditional Skewness in Asset Pricing Tests," Journal of Finance, American Finance Association, vol. 55(3), pages 1263-1295, June.
    36. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
    37. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Clerk, Luke & Savel’ev, Sergey, 2022. "AI algorithms for fitting GARCH parameters to empirical financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    2. Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.
    3. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iseringhausen, Martin, 2020. "The time-varying asymmetry of exchange rate returns: A stochastic volatility – stochastic skewness model," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 275-292.
    2. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.
    3. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    4. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    5. Tzouras, Spilios & Anagnostopoulos, Christoforos & McCoy, Emma, 2015. "Financial time series modeling using the Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 50-68.
    6. Dongming Zhu & John W. Galbraith, 2009. "Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution," CIRANO Working Papers 2009s-24, CIRANO.
    7. Christophe Ley, 2014. "Flexible Modelling in Statistics: Past, present and Future," Working Papers ECARES ECARES 2014-42, ULB -- Universite Libre de Bruxelles.
    8. Rubio, Francisco Javier & Steel, Mark F. J., 2014. "Bayesian modelling of skewness and kurtosis with two-piece scale and shape transformations," MPRA Paper 57102, University Library of Munich, Germany.
    9. Jondeau, Eric & Rockinger, Michael, 2003. "Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements," Journal of Economic Dynamics and Control, Elsevier, vol. 27(10), pages 1699-1737, August.
    10. Noureddine Benlagha & Wael Hemrit, 2018. "The Dynamic and Dependence of Takaful and Conventional Stock Return Behaviours: Evidence from the Insurance Industry in Saudi Arabia," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 25(4), pages 285-323, December.
    11. Jondeau, E. & Rockinger, M., 2000. "Conditional Volatility, Skewness, and Kurtosis: Existence and Persistence," Working papers 77, Banque de France.
    12. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    13. Allen, David & Lizieri, Colin & Satchell, Stephen, 2020. "A comparison of non-Gaussian VaR estimation and portfolio construction techniques," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 356-368.
    14. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    15. Giuseppe Brandi & T. Di Matteo, 2022. "Multiscaling and rough volatility: an empirical investigation," Papers 2201.10466, arXiv.org.
    16. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2014. "Semi-nonparametric VaR forecasts for hedge funds during the recent crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 330-343.
    17. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    18. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    19. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    20. Alexander, Carol & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Sarabia, José María, 2012. "Generalized beta-generated distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1880-1897.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:299:y:2021:i:1:d:10.1007_s10479-019-03305-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.