Advanced Search
MyIDEAS: Login to save this paper or follow this series

Forecasting Expected Shortfall with a Generalized Asymmetric Student-t Distribution

Contents:

Author Info

  • Dongming Zhu
  • John Galbraith

    ()

Abstract

Financial returns typically display heavy tails and some skewness, and conditional variance models with these features often outperform more limited models. The difference in performance may be especially important in estimating quantities that depend on tail features, including risk measures such as the expected shortfall. Here, using a recent generalization of the asymmetric Student-t distribution to allow separate parameters to control skewness and the thickness of each tail, we fit daily financial returns and forecast expected shortfall for the S&P 500 index and a number of individual company stocks; the generalized distribution is used for the standardized innovations in a nonlinear, asymmetric GARCH-type model. The results provide empirical evidence for the usefulness of the generalized distribution in improving prediction of downside market risk of financial assets. De façon générale, les rendements financiers sont caractérisés par des queues épaisses et une certaine asymétrie. Ainsi, les modèles à variance conditionnelle dotés de ces caractéristiques donnent de meilleurs résultats que les modèles plus limités. La différence dans les résultats obtenus peut être particulièrement importante lorsqu’il s’agit d’évaluer des quantités qui dépendent des caractéristiques des queues, y compris les mesures du risque, tel que le manque à gagner prévu. Dans le cas actuel, en recourant à une généralisation récente de la distribution asymétrique suivant la loi t de Student, de sorte que des paramètres distincts limitent l’asymétrie et l’épaisseur de chaque queue, nous intégrons les rendements financiers quotidiens et estimons le manque à gagner prévu dans le cas de l’indice S&P 500 et de certaines actions de compagnies individuelles. La distribution généralisée est utilisée pour les innovations normalisées contenues dans un modèle asymétrique non linéaire de type GARCH. Les résultats démontrent de façon empirique l’utilité de la distribution généralisée pour améliorer les prévisions au sujet du risque de perte en cas de baisse du marché des actifs financiers.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.cirano.qc.ca/pdf/publication/2009s-24.pdf
Download Restriction: no

Bibliographic Info

Paper provided by CIRANO in its series CIRANO Working Papers with number 2009s-24.

as in new window
Length:
Date of creation: 01 May 2009
Date of revision:
Handle: RePEc:cir:cirwor:2009s-24

Contact details of provider:
Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
Phone: (514) 985-4000
Fax: (514) 985-4039
Email:
Web page: http://www.cirano.qc.ca/
More information through EDIRC

Related research

Keywords: asymmetric distribution; expected shortfall; NGARCH model; distribution asymétrique; manque à gagner prévu; modèle NGARCH (Nonlinear Generalized AutoRegressive Conditional Heteroscedasticity);

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  2. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  3. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew "t"-distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389.
  4. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  5. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  6. Dima Alberg & Haim Shalit & Rami Yosef, 2008. "Estimating stock market volatility using asymmetric GARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 18(15), pages 1201-1208.
  7. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
  8. Mittnik, Stefan & Paolella, Marc S., 2003. "Prediction of Financial Downside-Risk with Heavy-Tailed Conditional Distributions," CFS Working Paper Series 2003/04, Center for Financial Studies (CFS).
  9. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 275-309.
  10. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, Elsevier.
  11. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-47, August.
  12. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the "t"-distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174.
  13. BAUWENS, Luc & LAURENT, Sébastien, 2002. "A new class of multivariate skew densities, with application to GARCH models," CORE Discussion Papers 2002020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  14. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
  15. Fernández, C. & Steel, M.F.J., 1996. "On Bayesian Modelling of Fat Tails and Skewness," Discussion Paper 1996-58, Tilburg University, Center for Economic Research.
  16. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Richard Gerlach & Zudi Lu & Hai Huang, 2013. "Exponentially Smoothing the Skewed Laplace Distribution for Value‐at‐Risk Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 534-550, 09.
  2. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
  3. Kumiega, Andrew & Neururer, Thaddeus & Van Vliet, Ben, 2011. "Independent component analysis for realized volatility: Analysis of the stock market crash of 2008," The Quarterly Review of Economics and Finance, Elsevier, vol. 51(3), pages 292-302, June.
  4. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2009s-24. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.