IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/44496.html
   My bibliography  Save this paper

Land degradation and trade liberalization: an Indian perspective

Author

Listed:
  • Pohit, Sanjib

Abstract

This paper makes an attempt to use GTAP model to understand the interplay between the agricultural trade liberalization and land degradation in India. Like any other developing country, soil erosion happens to be one of the principal environmental problems caused by agricultural production in India. In this paper, our attempt is to simulate the on-site productivity impacts of erosion, along with standard intersectoral and inter-regional economic effects of trade liberalization. The deeper and fuller agricultural trade liberalization opens up opportunities for India’s agriculture. Our result indicates that paddy, wheat, and other agriculture are the sectors in India where production would expand following liberalisation while there would be a fall in production in cereal grain sector and livestock sector. Overall, there is a small increase in India’s welfare to the tune of US $ 360 millions. While India’s agricultural expands due to opening up of opportunities, soil degradation increases with increased use of land. To what extent, the above result would change if we incorporate land degradation feedback mechanism in our analysis? Our results indicates that agricultural trade liberalisation reduces land productivity, but the effects are weak to negate the benefits of India’s welfare from agricultural trade liberalisation.

Suggested Citation

  • Pohit, Sanjib, 2013. "Land degradation and trade liberalization: an Indian perspective," MPRA Paper 44496, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:44496
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/44496/1/MPRA_paper_44496.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barrett, Scott, 1991. "Optimal soil conservation and the reform of agricultural pricing policies," Journal of Development Economics, Elsevier, vol. 36(2), pages 167-187, October.
    2. Darwin, Roy & Tsigas, Marinos E. & Lewandrowski, Jan & Raneses, Anton, 1995. "World Agriculture and Climate Change: Economic Adaptations," Agricultural Economic Reports 33933, United States Department of Agriculture, Economic Research Service.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohngen, Brent & Mendelsohn, Robert & Sedjo, Roger A., 2001. "A Global Model Of Climate Change Impacts On Timber Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-18, December.
    2. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2023. "Agriculture Risks and Opportunities in a Climate-Vulnerable Watershed in Northeastern Taiwan—The Opinions of Leisure Agriculture Operators," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    3. Monge, Juan J. & Bryant, Henry L. & Gan, Jianbang & Richardson, James W., 2016. "Land use and general equilibrium implications of a forest-based carbon sequestration policy in the United States," Ecological Economics, Elsevier, vol. 127(C), pages 102-120.
    4. Hongxing Liu & Wendong Zhang & Elena Irwin & Jeffrey Kast & Noel Aloysius & Jay Martin & Margaret Kalcic, 2020. "Best Management Practices and Nutrient Reduction: An Integrated Economic-Hydrologic Model of the Western Lake Erie Basin," Land Economics, University of Wisconsin Press, vol. 96(4), pages 510-530.
    5. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Sheng, Yu & Zhao, Shiji & Yang, Sansi, 2021. "Weather shocks, adaptation and agricultural TFP: A cross-region comparison of Australian Broadacre farms," Energy Economics, Elsevier, vol. 101(C).
    7. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    8. Richard S.J. Tol & Samuel Fankhauser & Richard G. Richels & Joel B. Smith, 2000. "How Much Damage Will Climate Change Do? Recent Estimates," Working Papers FNU-2, Research unit Sustainability and Global Change, Hamburg University, revised Sep 2000.
    9. Ruslana Rachel PALATNIK, 2008. "Climate Change Assessment and Agriculture in General Equilibrium Models: Alternative Modeling Strategies," EcoMod2008 23800101, EcoMod.
    10. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
    11. Martinsohn, Maria & Hansen, Heiko, 2012. "The Impact of Climate Change on the Economics of Dairy Farming – a Review and Evaluation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(02), pages 1-16, May.
    12. Francesco Bosello & Lorenza Campagnolo & Raffaello Cervigni & Fabio Eboli, 2018. "Climate Change and Adaptation: The Case of Nigerian Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 69(4), pages 787-810, April.
    13. Todd Sanderson & Fredoun Z. Ahmadi‐Esfahani, 2009. "Testing Comparative Advantage in Australian Broadacre Agriculture Under Climate Change: Theoretical and Empirical Models," Economic Papers, The Economic Society of Australia, vol. 28(4), pages 346-354, December.
    14. Grepperud, Sverre, 1995. "Soil conservation and governmental policies in tropical areas: Does aid worsen the incentives for arresting erosion?," Agricultural Economics, Blackwell, vol. 12(2), pages 129-140, August.
    15. Sands, Ronald D. & Malcolm, Scott A. & Suttles, Shellye A. & Marshall, Elizabeth, 2017. "Dedicated Energy Crops and Competition for Agricultural Land," Economic Research Report 252445, United States Department of Agriculture, Economic Research Service.
    16. Melania Michetti & Ramiro Parrado, 2012. "Improving Land-use Modelling within CGE to Assess Forest-based Mitigation Potential and Costs," Working Papers 2012.19, Fondazione Eni Enrico Mattei.
    17. Zhai, Fan & Lin, Tun & Byambadorj, Enerelt, 2009. "A General Equilibrium Analysis of the Impact of Climate Change on Agriculture in the People’s Republic of China," Asian Development Review, Asian Development Bank, vol. 26(1), pages 206-225.
    18. Ian Coxhead & Sisira Jayasuriya, 1994. "Technical Change in Agriculture and Land Degradation in Developing Countries: A General Equilibrium Analysis," Land Economics, University of Wisconsin Press, vol. 70(1), pages 20-37.
    19. Khalifa, Sherin & Henning, Christian H. C. A., 2020. "Climate change and civil conflict in SSA and MENA: The same phenomena, but different mechanisms?," Working Papers of Agricultural Policy WP2020-03, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    20. Sasmal, Joydeb & Weikard, Hans-Peter, 2013. "Soil Degradation, Policy Intervention and Sustainable Agricultural Growth," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 52(4), pages 1-20, November.

    More about this item

    Keywords

    Land Degradation; Trade Liberalization;

    JEL classification:

    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:44496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.